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Abstract

This paper details the derivation of the Black-Scholes Formula, a founda-
tional result in options pricing. Chapters 2-5 take the reader through the
math behind the original derivation of the Black-Scholes Formula, includ-
ing Itô’s Lemma, the Black-Scholes PDE, the Initial Value Problem for
the Heat Equation on the Real Line, and solving the Black-Scholes PDE
to find the Black-Scholes Formula for a call option. Chapter 6 covers the
Black-Scholes Formula for a put option. Chapter 7 covers the probability
approach to deriving the Black-Scholes Formula, which is quicker to read
through and just as effective in producing the formula.
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1 Options

Definition 1.1. A call option is a contract between two parties in which the
holder of the option has the right (not the obligation) to buy an asset at a
specified time in the future, at a specified price.

• The asset in which the holder of the option has the right to buy is the
underlying asset, whose value is denoted by St.

• The specified time T at which the holder of the option has the option to
buy is called the expiration date.

• The specified price K at which the holder has the right to buy the under-
lying at is called the strike price.

• We will be dealing with European-style call options, which are character-
ized by the right to buy the underlying at the expiration date, as oppossed
to American-style call options, which are characterized by the right to buy
the underlying at any time prior to expiration.

Suppose you are the rational holder of a call option expiring today. If K > ST ,
you would not exercise your right to buy the underlying at K when you could
buy the underlying for ST in the market; hence the option is worth nothing.
However, if K < ST , you would exercise your right to buy the underlying at K
because you will be able to make a profit of ST −K by subsequently selling the
underlying in the market. Therefore, a call option has payoff

max (ST −K, 0)

Definition 1.2. A put option is a contract between two parties in which the
holder of the option has the right (not the obligation) to sell an asset at a
specified time in the future, at a specified price.
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By similar logic, a put option has payoff

max (K − ST , 0)

Discussion 1.3. Because an option derives its value from an underlying asset
whose future value is unknown, the value of the option is also unkown. However,
in this paper we will accept certain assumptions which will allow us to derive a
formula which produces the value of an option at any time t prior to the option’s
expiration. Specifically, we will derive a formula which gives us the time-t price
of a European call and put option with strike price K and expiration T on an
underlying asset whose value is given by St.
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2 Itô’s Lemma

Discussion 2.1. Because the future value of the underlying asset of an option
is unkown, it is appropriate to model the value of the asset St as a stochastic
(random) process. This section will discuss some mathematical consequences of
the way we choose to model St.

Definition 2.2. A Brownian Motion {Wt : t ≥ 0} is a real-valued stochastic
process defined by 3 properties:

• W0 = 0

• W has independent increments:
For all times 0 < t1 < t2 < ... < tn, the random variables
Wt1 ,Wt2 −Wt1 , ...,Wtn −Wtn−1 are independent

• W has normally distributed increments:
For all 0 ≤ s ≤ t, Wt −Ws ∼ N (0, s− t)

Discussion 2.3. It is easy to write down 3 properties and see what follows
from them. However, it is not necessarily the case that such a Wt exists, just
because we wrote down some properties, since it could be the the properties
cause a contradiction. Well, it turns out that Brownian Motion does exist, and
it can be constructed, but a proof of this fact is out of scope.

Now, let Wt be a Brownian Motion. We will need make sense of equations
such as

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt (*)

We should read the above equations as stating that at time t, Xt is evolving like
a Brownian Motion with drift µ and volatility σ. But in terms of mathematical
rigor, what does such an equation mean? In stochastic calculus, we define the
derivative of a stochastic process dWt in terms of the integral. In other words,
we say that Xt is a solution to (*) if

Xt = X0 +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs

The ds integral is the usual Reimann integral from calculus. We give meaning
to the second term, and more generally to∫ t

0

AsdWs

using the Itô integral. To develop the Itô integral with complete mathematical
rigor requires tools like measure theory which is outside of my domain of knowl-
edge. However, I will be as rigorous as I can in order to provide a solid intuition
behind some important results in stochastic calculus.
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Definition 2.4. An Itô integral is an integral with respect to Brownian Motion,
like ∫ T

0

σ(t)dWt

We divide the time period [0, T ] into N periods: for 0 ≤ t ≤ T , let

∆t =
T − t
N

and tn = t+ n∆t for n ∈ {0, 1, ..., N − 1}

We define ∫ T

t

σ(s)dWs = lim
N→∞

N−1∑
n=0

σ(tn)∆Wtn

Discussion 2.5. Now, recall from multivariable calculus

∆f(x, y) =
∂f

∂x
∆x+

∂f

∂y
∆y +

1

2

∂2f

∂x2
(∆x)2 +

∂2f

∂x∂y
∆x∆y +

1

2

∂2f

∂y2
(∆y)2 + ...

In the limit as ∆x and ∆y tend to 0, we have

df(x, y) =
∂f

∂x
dx+

∂f

∂y
dy +

1

2

∂2f

∂x2
(dx)2 +

∂2f

∂x∂y
dxdy +

1

2

∂2f

∂y2
(dy)2 + ... (*)

If f : R2 → R is smooth and Xt is a stochastic process, we may write

df(Xt, t) =
∂f

∂Xt
dXt +

∂f

∂t
dt+

1

2

∂2f

∂X2
t

(dXt)
2 +

∂2f

∂Xt∂t
dXtdt+

1

2

∂2f

∂t2
(dt)2 + ...

(**)

Recalling the Chain Rule, in ordinary calculus (*), we drop all but the dx and
dy terms in the expansion. In stochastic calculus (**), however, we keep an
extra term, as detailed in the following lemmas.

Lemma 2.6.
∫ T
0
dt2 = 0,

∫ T
0
dtdWt = 0, and

∫ T
0
dW 2

t = dt

Proof. From (2.4) we let ∆t = T
N .

• Let p ∈ N. By definition of the Reimann Integral,∫ T

0

(dt)p = lim
N→∞

N−1∑
n=0

(∆t)p = lim
N→∞

N(∆t)p = lim
N→∞

(N∆t)(∆t)p−1

= T lim
N→∞

(∆t)p−1 = T lim
N→∞

(
T

N
)p−1 =

{
T if p = 1

0 if p > 1

Hence
∫ T
0
dt2 = 0.
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• Also,

E
[∫ T

0

dW 2
t

]
= E

[
lim
N→∞

N−1∑
n=0

(∆Wtn)2
]

by (2.4)

= lim
N→∞

N−1∑
n=0

E [(∆Wtn)2]

= lim
N→∞

N−1∑
n=0

Var [∆Wtn ] since ∆Wtn has mean 0 by (2.2)

= lim
N→∞

N−1∑
n=0

∆t by (2.2)

= lim
N→∞

N∆t = lim
N→∞

T = T

And

Var

[∫ T

0

dW 2
t

]
= Var

[
lim
N→∞

N−1∑
n=0

(∆Wtn)2
]

by (2.4)

= lim
N→∞

N−1∑
n=0

Var [(∆Wtn)2]

= lim
N→∞

N−1∑
n=0

E [(∆Wtn)4]− E [(∆Wtn)2]2

= lim
N→∞

N−1∑
n=0

E [(∆Wtn)4]−Var [∆Wtn ]2

since ∆Wtn has mean 0 by (2.2)

= lim
N→∞

N−1∑
n=0

E [(∆Wtn)4]− (∆t)2 by (2.2)

= lim
N→∞

N−1∑
n=0

3(∆t)2 − (∆t)2

because the fourth moment of a Normal(mean=m,variance=v) random variable is 3v2

= lim
N→∞

N−1∑
n=0

2(∆t)2

= 2 lim
N→∞

N−1∑
n=0

(
T

N
)2 = 2T 2 lim

N→∞

1

N
= 0

Because E
[∫ T

0
dW 2

t

]
= T and Var

[∫ T
0
dW 2

t

]
= 0, we say

∫ T
0
dW 2

t = dt.

•
∫ T
0
dtdWt = 0 is shown similarly.
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Lemma 2.7. (Itô’s Lemma) If Xt a stochastic process satisfying

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt

and f(x, t) is twice-differentiable, then f(Xt, t) is a stochastic process satisfying

df(Xt, t) =
∂f

∂t
(Xt, t)dt+

∂f

∂Xt
(Xt, t)dXt +

1

2

∂2f

∂X2
t

(Xt, t)(dXt)
2

Proof. As discussed in (2.3), a stochastic derivative makes sense only in terms of
the Itô integral. Clearly dt and dXt may be nonzero when integrated. However,
dt2 integrates to 0 by the previous lemma, and therefore so do all higher order dt
terms. Likewise, (dXt)

3 and all higher power terms will integrate to 0 because,
by the previous lemma,

(dXt)
3 = (dXt)

2(dXt) = (σ2X2
t dt)(µdt+ σdWt) = µσ2dt2 + σ3dtdWt = 0

Also, dtdXt and all higher power mixed terms will integrate to 0 because, by
the previous lemma,

dtdXt = dt(µdt+ σdWt) = µdt2 + σdtdWt = 0

However, (dXt)
2 may not intgrate to zero because, by the previous lemma,

(dXt)
2 = µ2dt2 + 2µσdtdWt + σ2(dWt)

2 = σ2dt

Hence the only terms of the taylor series expansion which survive are the dt,
dXt, and dX2

t terms.

Definition 2.8. A stochastic process St is a Geometric Brownian Motion if it
satisfies the stochastic differential equation

dSt = µStdt+ σStdWt

where µ and σ are constants. In deriving the Black-Scholes Formula, we will
assume that the value of the underlying asset is given by a Geometric Brownian
Motion St.

Corollary 2.9. If St is a Geometric Brownian Motion, then

(dSt)
2 = σ2S2

t dt

Proof. As demonstrated in the proof of (2.7),

(dSt)
2 = µ2S2

t�
�>

0
dt2 + 2µσS2

t��
��:0

dtdWt + σ2S2
t (dWt)

2 = σ2S2
t dt
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3 The Black-Scholes PDE

Definition 3.1. The Black-Scholes PDE is a partial differential equation which
describes the relationship between the partial derivatives of C(St, t), the time-t
value of a European call option with expiration T and strike price K on an
underlying asset whose value is given by the Geometric Brownian Motion St.

Definition 3.2. The risk-free rate r is the theoretical rate of return of an
investment with no risk. US Treasury bills are considered of the most risk-free
investments, so the yield of a US Treasury bill is often used as the risk-free rate
in practice.

Theorem 3.3. Let r denote the risk-free rate. Then the Black-Scholes PDE is

∂C

∂t
(St, t) + rSt

∂C

∂S
(St, t) +

1

2
σ2S2

t

∂2C

∂S2
t

(St, t) = rC(St, t)

Proof. Since St is a Geometric Brownian Motion, note that dSt and (dSt)
2

are given by (2.8) and (2.9). We begin by applying Itô’s Lemma (2.7) with
Xt 7→ St, f 7→ C:

dC(St, t) =
∂C

∂t
(St, t)dt+

∂C

∂St
(St, t)dSt +

1

2

∂2C

∂S2
t

(St, t)dS
2
t

=
∂C

∂t
(St, t)dt+

∂C

∂St
(St, t)(µStdt+ σStdWt) +

1

2

∂2C

∂S2
t

(St, t)(σ
2S2

t dt)

= (
∂C

∂t
(St, t) + µSt

∂C

∂St
(St, t) +

1

2
σ2S2

t

∂2C

∂S2
t

(St, t))dt+ σSt
∂C

∂St
dWt

Now consider the portfolio (1 call option, a shares), where the number of shares
a that we hold will be chosen strategically later on. The value of the portfolio
is

Vt = 1 · C + a · St = C + aSt

Then

dVt = d(C + aSt)

= dC + a(dSt)

= (
∂C

∂t
(St, t) + µSt

∂C

∂St
(St, t) +

1

2
σ2S2

t

∂2C

∂S2
t

(St, t) + aµSt)dt

+ σSt(
∂C

∂St
(St, t) + a)dWt

Now, we let a = − ∂C
∂St

(St, t) in order to hedge away the risk in our portfolio.
In other words, with this choice of a, the random dWt component disappears,
leaving the portfolio void of risk/randomness. Hence

dVt = (
∂C

∂t
(St, t) +

1

2
σ2S2

t

∂2C

∂S2
t

(St, t))dt (3.4)
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On the other hand, now that the portfolio is now risk free, it must grow over
time at the risk-free rate r, giving us another way to calculate the dynamics of
the value of the portfolio:

dVt
dt

= rVt

Hence

dVt = rVtdt = r(C(St, t) + aSt)dt = r(C(St, t)− St
∂C

∂t
(St, t))dt (3.5)

Because dVt gives the dynamics of the value of the same portfolio in two ways
- equations (3.4) and (3.5) - we can set them equal to each other:

∂C

∂t
(St, t) +

1

2
σ2S2

t

∂2C

∂S2
t

(St, t) = rC(St, t)− rSt
∂C

∂t
(St, t)

Rearranging gives us the Black-Scholes PDE:

∂C

∂t
(St, t) + rSt

∂C

∂S
(St, t) +

1

2
σ2S2

t

∂2C

∂S2
t

(St, t) = rC(St, t)

Discussion 3.6. In order to make the Black-Scholes PDE make sense in terms
of options pricings, we must put some constraints on the PDE. Specifically, we
know that the value of a European call option at its expiration date is given by
its payoff function:

C(ST , T ) = max (ST −K, 0)

Thus the above equation is a fitting terminal condition for the PDE. Also, we
know that t represents time, so

t > 0

Further, St represents the value of the underlying, where the underlying could
be anything as long as it is quantifiable, so

−∞ < St <∞

Therefore, the Black-Scholes PDE with its constraints is given by

∂C
∂t (St, t) + rSt

∂C
∂S (St, t) + 1

2σ
2S2

t
∂2C
∂S2

t
(St, t) = rC(St, t)

with terminal condition C(ST , T ) = max (ST −K, 0)

for t > 0 and −∞ < St <∞
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4 The Heat Equation in 1 Space Dimension

We want to find a formula C(St, t) for the time-t price of a European-style call
option. We have found a partial differential equation describing C(St, t), the
Black-Scholes PDE (3.6), and we want to find a formula for C which satisfies
this PDE. We accomplish this by reducing the PDE to the heat equation.

Definition. The initial value problem for the heat equation on the real line is
to find a function u(x, t) satisfying

(∗)

{
ut − kuxx = 0 for x ∈ R, t ≥ 0, k > 0

u(x, 0) = φ(x) for x ∈ R

where φ(x) : R→ R is the initial condition.

4.1 Try to Reduce the Heat Equation to an ODE

We begin by guessing the form of the solution:

u(x, t) = g

(
x√
4kt

)
The intuition behind this ansatz is that we want u to become a function of one
variable g, with the hope than solving an ODE will be easier than solving a

PDE. We select p ∝ x√
t

since ut = kuxx suggests a ratio of x2

t , and we have the
1√
4k

term to make the math nicer. We now compute partial derivatives:

ut = g′
(

x√
4kt

)
· x√

4k
· d
dt

[
1√
t

]
= g′

(
x√
4kt

)
· −x

2t
√

4kt

uxx =
d

dx

[
g′
(

x√
4kt

)
· 1√

4kt

]
= g′′

(
x√
4kt

)
· 1

4kt

Therefore, letting p = x√
4kt

,

ut−kuxx = − 1

2t

x√
4kt

g′−k 1

4kt
g′′ = −1

t

(
1

2

x√
4kt

g′+
1

4
g′′
)

= −1

t

(
1

2
pg′(p)+

1

4
g′′(p)

)
For u to solve the heat equation, we want

ut − kuxx = 0

so to accomplish this, we select g(p) such that

1

2
pg′(p) +

1

4
g′′(p) = 0
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Well,

g′′ + 2pg′ = 0 =⇒ g′′

g′
= −2p

=⇒ log(g′) = −p2 + C1

=⇒ g′ = Ae−p
2

=⇒ g(p) = A

∫ p

0

e−s
2

ds+B

Hence u has the form

u(x, t) = A

∫ x/
√
4kt

0

e−s
2

ds+B

Now, we need to select values for the constants A and B such that the solu-
tion behaves the way we want it to. Specifically, we want the initial condition
u(x, 0) = φ(x) to hold. However, our above form for u(x, t) blows up at t = 0,
so we need to do some fiddling.

4.2 Special Case

We now consider a special case of the initial condition

φ(x) = 1{x>0}(x) =

{
1 for x > 0

0 for x ≤ 0

yielding the problem

(∗∗)

{
Qt − kQxx = 0 for x ∈ R, t ≥ 0, k > 0

Q(x, 0) = 1{x>0}(x) for x ∈ R

where Q denotes the solution to our special case heat equation. Now, since our
above form for u(x, t) blows up at t = 0, so we instead desire

lim
t→0+

Q(x, t) = 1{x>0}(x)

But first, we prove a lemma.

Lemma. ∫ ∞
−∞

e−x
2

dx =
√
π

Proof. Let

I =

∫ ∞
−∞

e−x
2

dx

Then

I2 =

(∫ ∞
−∞

e−x
2

dx

)(∫ ∞
−∞

e−y
2

dy

)
=

∫ ∞
−∞

∫ ∞
−∞

e−(x
2+y2)dxdy
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Switching to polar coordinates,

I2 =

∫ 2π

0

∫ ∞
0

e−r
2

rdrdθ = 2π

∫ ∞
0

e−r
2

rdr = −π[e−r
2

]∞0 = π

Hence
I =
√
π

Now, we find A and B via our initial condition. For x < 0, we want

lim
t→0+

Q(x, t){x<0} = A

∫ −∞
0

e−s
2

ds+B = 0

and for x > 0, we want

lim
t→0+

Q(x, t){x>0} = A

∫ ∞
0

e−s
2

ds+B = 1

Using the above lemma, this yields 2 equations and 2 unknowns

−A
√
π

2
+B = 0 and A

√
π

2
+B = 1

Solving this yields

B =
1

2
and A =

1√
π

Hence our solution to the special case of the heat equation is

Q(x, t) =
1

2
+

1√
π

∫ x/
√
4kt

0

e−s
2

ds

4.3 The Fundamental Solution

Definition. The fundamental solution of the heat equation is

S(x, t) = Qx(x, t) =
1√

4πkt
e−

x2

4kt

Because Q solves the heat equation, so does the fundamental solution S = Qx,
since

Qt − kQxx = 0 =⇒ ∂

∂x
(Qt − kQxx) = 0

=⇒ Qtx − kQxxx = 0

=⇒ Qxt − kQxxx = 0 by continuity

=⇒ St − kSxx = 0

It turns out that we can use the fundamental solution to solve the original PDE
(∗), even though it came from the special case (∗∗).
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4.4 Solving the Heat Equation

The intuition behind the following theorem is that, for linear PDEs such as the
heat equation (∗), a summation of solutions is also a solution (which explains
the integral), and a convolution of solutions is also a solution (which explains
the ‘x− y’ term). The φ appears to satisfy the initial condition.

Theorem 4.1. Assume limx→±∞ φ(x) = 0 (can assume something weaker,
that φ is dominated a la the dominated convergence theorem, but that is beyond
scope). Then the unique solution of the PDE (∗) is

u(x, t) =

∫ ∞
−∞

S(x− y, t)φ(y)dy =
1√

4πkt

∫ ∞
−∞

e−
(x−y)2

4kt φ(y)dy

Proof. 1. First, u satisfies the heat equation:

ut − kuxx =

(
∂

∂t
− k ∂

2

∂x2

)
u(x, t)

=

(
∂

∂t
− k ∂

2

∂x2

)∫ ∞
−∞

S(x− y, t)φ(y)dy

=

∫ ∞
−∞

(
∂

∂t
− k ∂

2

∂x2

)
S(x− y, t)φ(y)dy by our domination assumption

=

∫ ∞
−∞

(St(x− y, t)− kSxx(x− y, t))φ(y)dy

=

∫ ∞
−∞

0 · φ(y)dy since S satisfies the heat equation

= 0

2. Second, u satisfies the initial condition:

u(x, t) =

∫ ∞
−∞

S(x− y, t)φ(y)dy

=

∫ ∞
−∞

∂

∂x
Q(x− y, t)φ(y)dy

=

∫ ∞
−∞

(
−∂
∂y

Q(x− y, t)
)
φ(y)dy

=

∫ ∞
−∞

Q(x− y, t)φ′(y)dy by integration by parts

Therefore, using the dominated convergence theorem,

lim
t→0+

u(x, t) =

∫ ∞
−∞

(
lim
t→0+

Q(x−y, t)
)
φ′(y)dy =

∫ ∞
−∞

1{y<x}φ
′(y)dy =

∫ x

−∞
φ′(y)dy = φ(x)

3. Finally, u is unique, using energy methods. Let u and v be 2 solutions of{
ut − kuxx = 0 for x ∈ R, t ≥ 0, k > 0

u(x, 0) = φ(x) for x ∈ R
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Let w = v − u. Then w satisfies{
wt − kwxx = 0 for x ∈ R, t ≥ 0, k > 0

w(x, 0) = 0 for x ∈ R

Define energy by

E(t) =
1

2

∫ ∞
−∞

w2dx

Then

E′(t) =
1

2

∫ ∞
−∞

∂

∂t
w2dx

=

∫ ∞
−∞

wwtdx

=

∫ ∞
−∞

w(kwxx)dx by the PDE

= k

∫ ∞
−∞

wwxxdx

= −k
∫ ∞
−∞

wxwxdx+
�
�
�
��>

0

wwx

∣∣∣∣∞
−∞

by integration by parts

= −k
∫ ∞
−∞

(wx)2dx

≤ 0

However,

E(0) =
1

2

∫ ∞
−∞
���

��:0
w(x, 0)2dx = 0

and E(t) ≥ 0 for all t ≥ 0, so we must have E(t) = 0 for all t ≥ 0.
Therefore w2 ≡ 0, so w ≡ 0, so u ≡ v. Since u and v are arbitrary, there
is at most one solution to (∗), and since u is a solution, it must be the
unique solution.
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5 The Black-Scholes Formula

Definition 5.1. The Black-Scholes Formula (for a call option) is a formula for
C(St, t) which solves the Black-Scholes PDE, given by (3.6). Specifically, the
Black-Scholes Formula is the no-arbitrage time-t value of a European call option
with maturity T and strike price K on an underlying asset whose value is given
by the Geometric Brownian Motion St.

Theorem 5.2. This Black-Scholes Formula (for a call option) is

C(St, t) = SΦ(d1)−Ke−r(T−t)Φ(d2)

where d1 = ln(S/K)+(r+σ2/2)(T−t)
σ
√
T−t

and d2 = ln(S/K)+(r−σ2/2)(T−t)
σ
√
T−t

and Φ(z) = 1√
2π

∫ z
−∞ e−y

2/2dy

Proof. We will use many changes of variable to reduce the Black-Scholes PDE
to the heat equation, and then solve the heat equation using the solution derived
in theorem (4.1).

We perform our first changes of variable:

t = T − τ

(1/2)σ2
; S = Kex ; C(S, t) = Kc(x, τ) (5.3)

which gives us

τ =
σ2

2
(T − t) ; x = ln(

S

K
) ; c(x, τ) =

C(S, t)

K
(5.4)

Our choice for t reverses the sense of time - the heat equation requires an initial
condition, but the framework of call options gives us a terminal condition.
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Now take the partial derivatives of C(S, t) relevant to the Black-Scholes PDE:

∂C

∂t
= K

∂c

∂τ

∂τ

∂t
= K

∂c

∂τ
(
−σ2

2
) =
−σ2K

2

∂c

∂τ

∂C

∂S
= K

∂c

∂x

∂x

∂S
= K

∂c

∂x
(

1

S
) =

K

S

∂c

∂x

∂2C

∂S2
=

∂

∂S
(
∂C

∂S
) =

∂

∂S
(K

∂c

∂x

1

S
) = K

∂c

∂x
(
−1

S2
) +

K

S

∂

∂S
(
∂c

∂x
)

=
−K
S2

∂c

∂x
+
K

S

∂

∂x
(
∂c

∂x
)(
∂x

∂S
) =
−K
S2

∂c

∂x
+
K

S2

∂2c

∂x2

=
K

S2
(
∂2c

∂x2
− ∂c

∂x
)

The terminal condition is

C(ST , T ) = max (ST −K, 0) = max (Kex −K, 0)

Also, notice that
C(ST , T ) = Kc(x, τ(T )) = Kc(x, 0)

This gives us an initial condition for c(x, τ):

c(x, 0) = max (ex − 1, 0) (5.5)

Now substitute the above derivatives into the Black-Scholes PDE (6.2) and
simplify:

−σ2K

2

∂c

∂τ
+ rS(

K

S

∂c

∂x
) +

1

2
σ2S2(

K

S2
(
∂2c

∂x2
− ∂c

∂x
))− rKc = 0

=⇒ −σ2K

2

∂c

∂τ
+ rK

∂c

∂x
+

1

2
σ2K(

∂2c

∂x2
− ∂c

∂x
)− rKc = 0

=⇒ −σ2

2

∂c

∂τ
+ r

∂c

∂x
+
σ2

2
(
∂2c

∂x2
− ∂c

∂x
)− rc = 0

=⇒ σ2

2
(
∂2c

∂x2
− ∂c

∂x
) + r(

∂c

∂x
− c) =

σ2

2

∂c

∂τ

=⇒ (
∂2c

∂x2
− ∂c

∂x
) +

r

(σ2/2)
(
∂c

∂x
− c) =

∂c

∂τ

Now define

h =
r

(σ2/2)
(5.6)

This leaves us with the rescaled, constant coefficient equation

∂c

∂τ
=
∂2c

∂x2
+ (h− 1)

∂c

∂x
− hc (5.7)
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We now perform our second changes of variable:

c(x, τ) = eax+bτu(x, τ) ; u = e−ax−bτ c (5.8)

where a and b are to be determined strategically later on.

We now take the partial derivatives relevant to the rescaled, constant coeffi-
cient equation (6.9):

cτ = beax+bτu+ eax+bτuτ

cx = aeax+bτu+ eax+bτux

cxx = a2eax+bτu+ 2aeax+bτux + eax+bτuxx

Plug these partial derivatives into the rescaled, constant coefficient equation
(6.9), and simplify:

beax+bτu+ eax+bτuτ = a2eax+bτu+ 2aeax+bτux + eax+bτuxx

+ (h− 1)(aeax+bτu+ eax+bτux)− heax+bτu

=⇒ bu+ uτ = a2u+ 2aux + uxx + (h− 1)(au+ ux)− hu
=⇒ uτ = uxx + (2a+ h− 1)ux + (a2 + (h− 1)a− h− b)u

We now choose a and b so that the u and ux terms in the above equation
disappear:

a =
−(h− 1)

2
; b = a2 + (h− 1)a− h =

−(h+ 1)2

4
(5.9)

This leaves us with the heat equation

uτ = uxx

We also need to adjust the initial condition from equation (6.8):

f(x) = u(x, 0) = e−ax−b·0c(x, 0) = e(
h−1
2 )xmax (ex − 1, 0)

= max (e(
h+1
2 )x − e(

h−1
2 )x, 0)

(5.10)

For future reference, we note that the above function is strictly positive when
the argument x is strictly positive; that is,

f(x) > 0 when x > 0, else f(x) = 0 (5.11)
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We are now ready to use the solution to the heat equation (6.1):

u(x, τ) =
1

2
√
πτ

∫ ∞
−∞

f(y)e
−(x−y)2

4τ dy

We begin by making a change of variable in the integration:

z =
y − x√

2τ

which gives us

y = z
√

2τ + x ; dz =
1√
2τ
dy

Then

u(x, τ) =
1√
2π

∫ ∞
−∞

f(z
√

2τ + x)e
−z2
2 dy

We need only integrate over the domain where f(y) > 0, which by (6.12) is for
y > 0 =⇒ y = z

√
2τ + x > 0 =⇒ z > −x/

√
2τ . On this domain,

f(z
√

2τ + x) = e(
h+1
2 )(z

√
2τ+x) − e(

h−1
2 )(z

√
2τ+x)

Hence

u(x, τ) =
1√
2π

∫ ∞
−x√
2τ

e(
h+1
2 )(z

√
2τ+x)e

−z2
2 dz − 1√

2π

∫ ∞
−x√
2τ

e(
h−1
2 )(z

√
2τ+x)e

−z2
2 dz

We will first calculate the first integral, I1. We begin by adjusting the exponent
to e:

(
h+ 1

2
)(z
√

2τ + x)− z2

2
= (−1

2
)(z2 −

√
2τ(h+ 1)z) + (

h+ 1

2
)x

= (−1

2
)(z −

√
τ/2(h+ 1))2 + (

h+ 1

2
)x+ τ

(h+ 1)2

4

Then

I1 =
1√
2π

∫ ∞
−x√
2τ

e(−
1
2 )(z−

√
τ/2(h+1))2+(h+1

2 )x+τ
(h+1)2

4 dz

=
1√
2π
e(
h+1
2 )x+τ

(h+1)2

4

∫ ∞
−x√
2τ

e(−
1
2 )(z−

√
τ/2(h+1))2dz

We now employ a strategic change of variable to coax the integrand into the
form of the probability density of the normal distribution:

y = z −
√
τ/2(h+ 1)

which yields

dy = dz ; y(z =
−x√

2τ
) =

−x√
2τ
−
√
τ/2(h+ 1) ; y(z =∞) =∞
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Then

I1 =
1√
2π
e(
h+1
2 )x+τ

(h+1)2

4

∫ ∞
−x/
√
2τ−
√
τ/2(h+1)

e−y
2/2dy

Because the integrand is the density of the normal distribution, we may change
the limits as shown below, by the symmetry of the integral of the density of the
normal distribution:

I1 =
1√
2π
e(
h+1
2 )x+τ

(h+1)2

4

∫ x/
√
2τ+
√
τ/2(h+1)

−∞
e−y

2/2dy

The above integral with the 1√
2π

factor is the CDF (cumulative distribution

function) of the normal distribution, denoted by Φ, which yeilds:

I1 = e(
h+1
2 )x+τ

(h+1)2

4 Φ(d1) where d1 =
x√
2τ

+

√
τ

2
(h+ 1)

This concludes our calculation of the first integral I1. The calculation of the
second integral is identical, except that (h+ 1) 7→ (h− 1) throughout.
Therefore

u(x, τ) = e(
h+1
2 )x+τ

(h+1)2

4 Φ(d1)− e(
h−1
2 )x+τ

(h−1)2

4 Φ(d2)

where d1 =
x√
2τ

+

√
τ

2
(h+ 1) ; d2 =

x√
2τ

+

√
τ

2
(h− 1)

(5.12)

Now we must unwind each of the changes of variables.

Remembering from (6.10) and (6.11), we have

c(x, τ) = u(x, τ)e−
(h−1)

2 x− (h+1)2

4 τ

Hence
c(x, τ) = exΦ(d1)− e−hτΦ(d2)

Remembering from (6.4), we have

C(S, t) = Kc(x, τ)

Hence
C(S, t) = KexΦ(d1)−Ke−hτΦ(d2)

Remembering from (6.4) and (6.9), we have

τ =
σ2

2
(T − t) ; S = Kex ; h =

r

σ2/2

Hence
C(S, t) = SΦ(d1)−Ke−r(T−t)Φ(d2)
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Remembering from (6.5) and (6.10), we have

x = ln(S/K) ; τ =
σ2

2
(T − t) ; h =

r

σ2/2

These allow us to adjust d1 and d2:

d1 =
x√
2τ

+

√
τ

2
(h+ 1) =

ln(S/K)

σ
√

(T − t)
+
σ
√

(T − t)
2

(
r

σ2/2
+ 1)

=
ln(S/K) + (r + σ2/2)(T − t)

σ
√
T − t

Similarly, d2 =
ln(S/K) + (r − σ2/2)(T − t)

σ
√
T − t

Discussion 5.13. Let’s examine how the inputs to the Black-Scholes Formula
are obtained in practice.

• Strike price, K (given in the option contract)

• Risk free rate of return, r (often given by US Treasury bonds, which are
considered one of the most ”risk-free” investments available)

• Time to expiration, T − t (the maturity T is given in the option contract;
T − t is generally calculated in years, but the unit does not matter as long
as it is consistent with the unit of volatility σ)

• Price of the underlying asset, St (can be easy or difficult to obtain/forecast,
depending on the underlying)

• Volatility of the underlying, σ.

In practice, volatility is generally calculated as a measure of the standard
deviation of log changes in value of the underlying. For instance, suppose
the underlying is the stock of a public company. The daily closing prices
of the stock are known. We would calculate volatility of the stock by
calculating the changes in the daily closing prices of the stock (the ratios
St+1/St for each t) for the last 31 days (31 is arbitrary), taking the natu-
ral log of these values, taking the standard deviation of these values, and
multiplying these numbers by

√
252 to annualize it. Succinctly,

σ =
√

252 ∗ standarddev[ln(
S1

S0
), ln(

S2

S1
), ..., ln(

S31

S30
)]

We take the natural log of the percent changes in prices because of contin-
uous compounding. Suppose the stock grows overnight at rate r. Then at
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time 1 (tomorrow), S1 = S0e
r∗1. Then r = ln(S1

S0
). Here, the changes in

stock price play the role of r because they are the factor at which the stock
price has grown or declined from one day to the next. Hence we should
take the natural log of the changes in price. We annualize volatility to
keep the units consistent with time T − t. We use 252 because there is
an average of 252 trading days per year. We multiply by the square-root
of time because volatility is meant to reflect the random fluctuations in
the value of the underlying, which is why it scales dWt in the definition
of Geometric Brownian Motion, and dW 2

t ≈ dt, so dWt ≈
√
dt, so the

random component is proportional to the square root of time.

21



6 Put-Call Parity

Discussion 6.1. In the previous section, we derived the Black-Scholes Formula
for a European call option. We would like to find a similar formula for a put
option. To do so, we employ Put-Call Parity.

Definition 6.2. A portfolio is a collection of assets.

Definition 6.3. The value of a portfolio X at time t, denoted VX(t), is the
sum of the value of each of the assets in the portfolio.

Definition 6.4. Let time t = 0 denote the current time. A portfolio X is an
arbitrage if either

• VX(0) = 0 and P [VX(T ) ≥ 0] = 1 and P [VX(T ) > 0] ≥ 0
(no initial investment, no chance of loss, some chance of gain)

OR

• VX(0) < 0 and P [VX(T ) ≥ 0] = 1
(get paid to own the portfolio, don’t have to pay anything back)

Aribtrage represents a severe mispricing.

Theorem 6.5. Suppose portfolio X is worth at least as much as portfolio Y
at some future time T in an arbitrage-free world. Then at any time t < T , X
will be worth at least as much as Y .

Proof. Suppose P [VX(T ) ≥ VY (T )] = 1. Construct the portfolio
Θ = (1 unit of X,−1 unit of Y ). We have P [VΘ(T ) ≥ 0] = P [VX(T ) −
VY (T ) ≥ 0] = 1. At time t < T , if VΘ(t) = VX(t) − VY (t) < 0, then VΘ is
an aribtrage by (6.3), contradicting that Θ exists in an arbitrage-free world.
Hence VX(t)− VY (t) ≥ 0. Since t is arbitrary, the claim holds.

Theorem 6.6. (Law of One Price) In an aribtrage-free world, if two static
portfolios have identical future values, then they have identical current values.

Proof. Let X and Y be two static portfolios such that P [VX(T ) = VY (T )] = 1
at some future time T . Then P [VX(T ) ≥ VY (T )] = 1, so VX(0) ≥ VY (0) by
the previous theorem. Similarly, P [VX(T ) ≤ VY (T )] = 1, so VX(0) ≤ VY (0).
Hence VX(0) = VY (0).

Theorem 6.7. (Put-Call Parity) Let C(St, t) be the value of a European call
option with strike price K and expiration T on an underlying St. Let P (St, t)
be the value of a European put option on the same asset with the same strike
price and expiration. Let B(t, T ) represent the value of a risk-free bond at time
t with final value 1 at expiration time T . Suppose there is no arbitrage. Then

P (St, t) + St = C(St, t) +KB(t, T )
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Proof. Consider the portfolio

X = (1 put option , 1 unit of underlying St)

At time t, X has value

VX(t) = (1
put

option
) · ( time t value

of put option
) + (1 unit of

underlying
) · ( time t value

of underlying
) = P (St, t) + St

Then at time T ,

VX(T ) =

{
K if ST ≤ K : option is worth K − ST , underlying is worth ST

ST if ST ≥ K : option is worth 0, underlying is worth ST

Now consider the portfolio

Y = (1 call option ,K bonds that pay 1 at time T )

At time t, Y has value

VY (t) = (1 call
option

) · ( time t value
of call option

) + (K bonds ) · ( time t value
of bond

) = C(St, t) +KB(t, T )

Then at time T ,

VY (T ) =

{
K if ST ≤ K : option is worth 0, each of K bonds is worth 1

ST if ST ≥ K : option is worth ST −K, each of K bonds is worth 1

Notice that P [VX(T ) = VY (T )] = 1, so the portfolios X and Y will have the
same value at time T . Then by the Law of One Price (6.5), the portfolios must
also have the same value at time t, so VX(t) = VY (t). Therefore

P (St, t) + St = C(St, t) +KB(t, T )

Definition 6.8. Let P (St, t) be the time-t value of a European put option with
strike price K and expiration T on an underlying St. Let C(st, t) denote the
valye of a European call option on the same underlying. Suppose there is no
aribtrage, and St is a Geometric Brownian Motion, which means C(St, t) is
given by the Black-Scholes Formula (for a call option) given by the previous
theorem. Let B(t, T ) denote the value of a bond worth 1 at time T . Then
P (St, t) is given by the Black-Scholes Formula (for a put option).
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Corollary 6.9. The Black-Scholes Formula (for a put option) is given by

P (St, t) = −SΦ(−d1) +Ke−r(T−t)Φ(−d2)

where d1 = ln(S/K)+(r+σ2/2)(T−t)
σ
√
T−t

and d2 = ln(S/K)+(r−σ2/2)(T−t)
σ
√
T−t

and Φ(z) = 1√
2π

∫ z
−∞ e−y

2/2dy

Proof. By Put-Call Parity (6.8),

P (St, t) = C(St, t) +KB(t, T )− St
= StΦ(d1)−Ke−r(T−t)Φ(d2) +KB(t, T )− St by (5.2)

= StΦ(d1)−Ke−r(T−t)Φ(d2) +Ke−r(T−t) − St by (7.9)

= St(Φ(d1)− 1) +Ke−r(T−t)(1− Φ(d2))

= −St(1− Φ(d1)) +Ke−r(T−t)(1− Φ(d2))

= −StΦ(−d1) +Ke−r(T−t)Φ(−d2)
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7 The Black-Scholes Formula: Probabilistic Ap-
proach

Discussion 7.1. Our goal is to find a formula C(St, t) for the time-t value of
a European call option with strike price K and maturity time T on an under-
lying asset whose value is given by the Geometric Brownian Motion St. In this
section, we derive such a formula, the Black-Scholes Formula, using probability,
as opposed to the PDE approach taken in Sections 4-6.

Definition 7.2. A stochastic process St is a Geometric Brownian Motion if it
satisfies the stochastic differential equation

dSt = µStdt+ σStdWt

Theorem 7.3. Suppose St is a Geometric Brownian Motion. Then the follow-
ing is a formula for St:

St = S0e
(µ−σ2/2)t+σWt

Proof. Apply Itô’s Lemma to f(St) = ln(St) :

d[ln(St)] =
∂

∂St
[ln(St)] · dSt +

1

2

∂2

∂S2
t

[ln(St)] · (dSt)2

=
1

St
(µStdt+ σStdWt) +

1

2
(
−1

S2
t

)(σ2S2
t dt)

= µdt+ σdWt −
1

2
σ2dt

= (µ− σ2

2
)dt+ σdWt

We now have

d[ln(St)] = (µ− σ2

2
)dt+ σdWt

Then

ln(St)− ln(S0) =

∫ t

0

(µ− σ2

2
)dx+

∫ t

0

σdWx

=⇒ ln(St) = ln(S0) + (µ− σ2

2
)t+ σWt

=⇒ eln(St) = eln(S0)+(µ−σ22 )t+σWt

Therefore,

St = S0e
(µ−σ22 )t+σWt
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Discussion 7.4. One way of valuing an option is to forecast the value of the
underlying and then calculate the resulting expected value of the option. With
the formula for St given by the preceeding theorem, we may find a sample
value for St many times - say, 30,000 times - and use the average of the sample
values as our projected time-T value for St. A single value for St given by the
preceeding formula is called a sample path because the random component Wt

gives it a different value each time it is simulated. Simulating the value of St
thousands of times and using the average as the expected value of St is known
as running a Monte Carlo Simulation, a common method in valuing complex
derivatives.

Definition 7.5. A random variable X is log-normally distributed if ln(X) is
normally distributed.

Lemma 7.6. A Geometric Brownian Motion St is log-normally distributed.

Specifically, ln( StS0
) is normally distributed with mean (µ − σ2

2 )t and variance

σ2t. Succintly,

ln(
St
S0

) ∼ Normal( (µ− σ2

2
)t , σ2t )

Proof. By the previous theorem,

St = S0e
(µ−σ22 )t+σWt

Hence

ln(
St
S0

) = (µ− σ2

2
)t+ σWt

Then by the properties of Brownian Motion from Chapter 2,

E [ln(
St
S0

)] = E [(µ− σ2

2
)t+ σWt]

= (µ− σ2

2
)t+ σE [Wt]

= (µ− σ2

2
)t

Var [ln(
St
S0

)] = Var [(µ− σ2

2
)t+ σWt]

= σ2Var [Wt]

= σ2t

Construction 7.7. With conciseness in mind, for the following proofs we will
say that for a Geometric Brownian Motion St, ln( StS0

) has mean m and variance

v, so that ln( StS0
) ∼ Normal(m, v):

m := (µ− σ2

2
)t ; v := σ2t
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Lemma 7.8. The probability density of a Geometric Brownian Motion St such
that ln( StS0

) ∼ Normal(m, v) is given by

fS(x) =
1√

2πvx
e
−(ln( x

S0
)−m)2

2v

Proof. First find the cumulative distribution function (CDF) of St:

FS(x) = P [St ≤ x] = P [
St
S0
≤ x

S0
] = P [ln(

St
S0

) ≤ ln(
x

S0
)]

= Φ(
ln( xS0

)−m
√
v

) (Φ is the CDF of the std. normal distribution)

=

∫ ln( x
S0

)−m
√
v

−∞

1√
2π
e
−z2
2 dz

Then differentiate to obtain the probability density function for St:

fS(x) =
d

dx

∫ ln( x
S0

)−m
√
v

−∞

1√
2π
e
−z2
2 dz

=
1√
2π
e
−(ln( x

S0
)−m)2

2v · ( 1

x
√
v

)

=
1√

2πvx
e
−(ln( x

S0
)−m)2

2v

Lemma 7.9. (Continuous Compounding) Suppose an asset A grows at a con-
stant rate r. If A0 is the current value of the asset and At is the value of the
asset at time t, then

At = A0e
rt

Proof. The compound interest formula is

At = A0(1 +
r

n
)nt

In continuous time, the discrete time periods defined by n are infenitesimal, and
so we take the limit as n→∞:

At = lim
n→∞

A0(1 +
r

n
)nt

= lim
x→∞

A0(1 +
1

x
)xrt letting x = n

r

= lim
x→∞

A0[(1 +
1

x
)x]rt

= A0[ lim
x→∞

(1 +
1

x
)x]rt

= A0e
rt by definition of e
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Definition 7.10. A universe is risk-neutral if for all assets A and future times
t in our universe, A is expected to grow at the risk-free rate r:

E [At] = A0e
rt

Lemma 7.11. In a risk-neutral universe, the drift µ of a Geometric Brownian
Motion St is the risk-free rate r.

Proof. By definition (9.11), in a risk-neutral universe,

E [St] = S0e
rt (*)

Also,

E [St] =

∫
S

xfS(x)dx =

∫ ∞
0

x
1√

2πvx
e
−(ln( x

S0
)−m)2

2v dx by (9.9)

Let z =
(ln( xS0

)−m)
√
v

So that dz = dx
x
√
v
, x = S0e

z
√
v+m , z(0) = −∞ , z(∞) =∞

Then

E[St] =
1√
2πv

∫ ∞
−∞

e
−z2
2 x
√
vdz

=
S0√
2π

∫ ∞
−∞

e
−z2
2 +z

√
v+mdz

=
S0√
2π

∫ ∞
−∞

e
−(z−

√
v)2

2 + v
2+mdz

=
S0√
2π
e
v
2+m

∫ ∞
−∞

e
−(z−

√
v)2

2 dz

Let y = (z −
√
v)/
√

2. Then

E[St] =
S0√
π
e
v
2+m

∫ ∞
−∞

e−y
2

dy

= S0e
v
2+m by (4. )

= S0e
σ2t
2 +(µ−σ22 )t by (9.8)

= S0e
µt

Therefore, recalling (*),

E [St] = S0e
µt = S0e

rt

Hence
µ = r
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Discussion 7.12. As a result of the previous theorem, we may use µ 7→ r with
regard to the underlying asset St, since the Black-Scholes Formula describes the
value of a European call option in a risk-neutral universe. This is consistent
with our initial derivation of the Black-Scholes PDE in chapter 4, for at (4.4)
we hedged out the risk in our portfolio with our smart choice for a, the number
of shares in our hedging portfolio.

Lemma 7.13. The time-0 value of a European call option with time to maturity
T and strike price K on an underlying Geometric Brownian Motion St is given
by

C(S0, 0) = S0Φ(d1)−Ke−rTΦ(d2)

where

d1,2 = d+,− =
ln(S0

K ) + (r ± σ2

2 )T

σ
√
T

Proof. Because we’re valuing a call option in a risk-neutral universe, by defini-
tion (9.10) we have

C(S0, 0) = e−rTE [C(ST , T )]

= e−rTE [max (St −K, 0)] by (1. )

= e−rTE
∫
S

max (x−K, 0)fS(x)dx by (9.9)

= e−rT
∫ ∞
K

(x−K)
1√

2πvx
e
−(ln( x

S0
)−m)2

2v dx

= e−rT
∫ ∞
K

1√
2πv

e
−(ln( x

S0
)−m)2

2v dx− e−rT
∫ ∞
K

K√
2πvx

e
−(ln( x

S0
)−m)2

2v dx

=: I1 + I2

The first integral is similar to what we encountered in lemma (9.11):

I1 =
e−rT√

2πv

∫ ∞
K

e
−(ln( x

S0
)−m)2

2v dx

Let z =
ln( xS0

)−m
√
v

So that dz = dx
x
√
v
, x = S0e

z
√
v+m , z(∞) =∞ , A := z(K) =

ln( KS0
)−m
√
v

Then

I1 =
e−rT√

2πv

∫ ∞
A

e
−z2
2 S0e

z
√
v+m
√
vdz

=
S0e
−rT
√

2π

∫ ∞
A

e
−z2
2 +z

√
v+mdz

=
S0e
−rT
√

2π

∫ ∞
A

e
−(z−

√
v)2

2 +m+ v
2 dz

=
S0e
−rT+m+ v

2

√
2π

∫ ∞
A

e
−(z−

√
v)2

2 dz

29



But −rT +m+ v
2 = −rT + (r − σ2

2 )T + σ2T
2 = 0 by (9.8) and (9.11), so

I1 =
S0√
2π

∫ ∞
A

e
−(z−

√
v)2

2 dz

Now let y = z −
√
v so that dy = dz , y(∞) =∞ , and

B := y(A) = A−
√
v =

ln(KS0
)−m
√
v

−
√
v

=
ln(KS0

)−m− v
√
v

=
ln(KS0

)− (r − σ2

2 )T − σ2T

σ
√
T

by (9.8) and (9.11)

=
ln(KS0

)− (r + σ2

2 )T

σ
√
T

Then

I1 = S0

∫ ∞
B

1√
2π
e
−y2
2 dy

Recognizing the integrand as the density of the standard normal distribution,

I1 = S0(1− Φ(B)) = S0Φ(−B) = S0Φ(d1)

Where Φ is the CDF of the standard normal distribution, and

d1 := −B =
− ln(KS0

) + (r + σ2

2 )T

σ
√
T

=
ln(S0

K ) + (r + σ2

2 )T

σ
√
T

Now we solve the second integral:

I2 = −e−rT
∫ ∞
K

K√
2πvx

e
−(ln( x

S0
)−m)2

2v dx

Let z =
ln( xS0

)−m
√
v

So that dz = dx
x
√
v
, x = S0e

z
√
v+m , z(∞) =∞ , A := z(K) =

ln( KS0
)−m
√
v

Then

I2 = −Ke−rT
∫ ∞
A

1√
2π
e
−z2
2 dz = −Ke−rT (1− Φ(A)) = −Ke−rTΦ(−A) = −Ke−rTΦ(d2)

Where

d2 := −A =
− ln(KS0

) +m
√
v

=
ln(S0

K ) + (r − σ2

2 )T

σ
√
T
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Hence
C(S0, 0) = S0Φ(d1)−Ke−rTΦ(d2)

Where

d1,2 = d+,− =
ln(S0

K ) + (r ± σ2

2 )T

σ
√
T

Corollary 7.14. The risk-neutral time-t value of a European call option with
maturity T and strike price K on an underlying Geometric Brownian Motion St
(with drift r, the risk-free rate, and volatility σ) is given by the Black-Scholes
Formula:

C(S, t) = SΦ(d1)−Ke−r(T−t)Φ(d2)

where d1 =
ln(S/K) + (r + σ2/2)(T − t)

σ
√
T − t

and d2 =
ln(S/K) + (r − σ2/2)(T − t)

σ
√
T − t

Proof. In the previous lemma, use T 7→ T−t. This is logically consistent because
in the previous lemma, T acted as the ”time until maturity”, but when valuing
an option at an arbitrary time t, the T − t is the ”time until maturity”.
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