
Astronomy and Computing 30 (2020) 100362

Contents lists available at ScienceDirect

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

Full length article

Conditional density estimation tools in python and Rwith
applications to photometric redshifts and likelihood-free cosmological
inference
N. Dalmasso a,⇤, T. Pospisil a,1, A.B. Lee a, R. Izbicki b, P.E. Freeman a, A.I. Malz c

a
Department of Statistics & Data Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

b
Department of Statistics, Federal University of São Carlos, São Paulo, Brazil

c
Center for Cosmology and Particle Physics, New York University, New York, NY 10003, USA

a r t i c l e i n f o

Article history:

Received 1 September 2019
Accepted 30 December 2019
Available online 13 January 2020

Keywords:

Nonparametric statistics
Statistical software
Statistical computing
Methods: Data analysis
Galaxies: Distances and redshifts
Cosmology: Cosmological parameters

a b s t r a c t

It is well known in astronomy that propagating non-Gaussian prediction uncertainty in photometric
redshift estimates is key to reducing bias in downstream cosmological analyses. Similarly, likelihood-
free inference approaches, which are beginning to emerge as a tool for cosmological analysis, require
a characterization of the full uncertainty landscape of the parameters of interest given observed data.
However, most machine learning (ML) or training-based methods with open-source software target
point prediction or classification, and hence fall short in quantifying uncertainty in complex regression
and parameter inference settings such as the applications mentioned above. As an alternative to
methods that focus on predicting the response (or parameters) y from features x, we provide
nonparametric conditional density estimation (CDE) tools for approximating and validating the entire
probability density function (PDF) p(y|x) of y given (i.e., conditional on) x. This density approach offers
a more nuanced accounting of uncertainty in situations with, e.g., nonstandard error distributions
and multimodal or heteroskedastic response variables that are often present in astronomical data
sets. As there is no one-size-fits-all CDE method, and the ultimate choice of model depends on
the application and the training sample size, the goal of this work is to provide a comprehensive
range of statistical tools and open-source software for nonparametric CDE and method assessment
which can accommodate different types of settings – involving, e.g., mixed-type input from multiple
sources, functional data, and images – and which in addition can easily be fit to the problem at
hand. Specifically, we introduce four CDE software packages in Python and R based on ML prediction
methods adapted and optimized for CDE: NNKCDE, RFCDE, FlexCode, and DeepCDE. Furthermore, we
present the cdetools package with evaluation metrics. This package includes functions for computing
a CDE loss function for tuning and assessing the quality of individual PDFs, together with diagnostic
functions that probe the population-level performance of the PDFs. We provide sample code in Python
and R as well as examples of applications to photometric redshift estimation and likelihood-free
cosmological inference via CDE.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Machine learning (ML) has seen a surge in popularity in almost
all fields of astronomy that involve massive amounts of complex
data (Ball and Brunner, 2010; Way et al., 2012; Ivezi¢ et al., 2014;

⇤ Corresponding author.
E-mail addresses: ndalmass@stat.cmu.edu (N. Dalmasso),

popt23@gmail.com (T. Pospisil), annlee@cmu.edu (A.B. Lee),
rafaelizbicki@gmail.com (R. Izbicki), pfreeman@cmu.edu (P.E. Freeman),
aimalz@nyu.edu (A.I. Malz).
1 Present Address: Google LLC, 1600 Amphitheatre Parkway, Mountain View,

CA 94043, USA

Ntampaka et al., 2019). Most ML methods target regression and
classification, whose primary goal is to return a point estimate
of an unknown response variable y given observed features x,
often falling short in quantifying nontrivial uncertainty in y. For
instance, returning a point estimate for a supernova’s type y given
a supernova’s light curve x, or for a galaxy mass y given its
light spectrum x, fails to capture degeneracies in the mapping
from x to y. Neglecting to propagate these uncertainties through
down-stream analyses may lead to imprecise or even inaccurate
inferences of physical parameters.

Consider the following two examples of problems where un-
certainty quantification can be impactful:

https://doi.org/10.1016/j.ascom.2019.100362
2213-1337/© 2020 Elsevier B.V. All rights reserved.

2 N. Dalmasso, T. Pospisil, A.B. Lee et al. / Astronomy and Computing 30 (2020) 100362

• Photometric redshift estimation. In photometric redshift
(photo-z) estimation, one attempts to constrain the cosmo-
logical redshift (z) of a galaxy after observing the shifted
spectrum using a handful of broadband filters, and some-
times additional variables such as morphology and envi-
ronment. In a prediction setting, the response y could be
the galaxy’s true (i.e. spectroscopically observed) redshift
but could also include other galaxy properties (↵) such as
the galaxy’s mass or age; the features x would represent
the collection of directly observable inputs such as photo-
metric magnitudes and colors used to predict y = z or
more generally a multivariate response y = (z, ↵). The use
of photo-z posterior estimates – that is, estimates of the
probability density functions (PDFs) for individual galaxies
– is crucial for cosmological inference from photometric
galaxy surveys, as & 99% of currently cataloged galaxies are
observed solely via photometry, a percentage that will only
grow in the coming decade as the Large Synoptic Survey
Telescope (LSST) begins gathering data (Ivezi¢ et al., 2019).
In addition, widely different redshifts can be consistent with
the observed colors of a galaxy; photo-z posterior estimates
can capture such degeneracy or multimodality in the distri-
bution whereas point estimates cannot. Though the benefits
of using posteriors over ↵ have yet to be fully exploited (Vi-
ironen et al., 2018), it is thoroughly established that one can
improve down-stream cosmological analysis by properly
propagating photo-z estimate uncertainties via probability
density functions (PDFs) rather than just using simple point
predictions of y (Mandelbaum et al., 2008; Wittman, 2009;
Sheldon et al., 2012; Carrasco Kind and Brunner, 2013; Graff
et al., 2014; Schmidt et al., 2020).

• Forward-modeled observables in cosmology. Some cos-
mological probes, such as the type Ia supernova (SN Ia)
distance-redshift relationship, have observables that are
straightforward to simulate in spite of an intractable likeli-
hood. Likelihood-Free Inference (LFI) methods allow for pa-
rameter inference in settings where the likelihood function,
which relates the observable data xobs to the parameters
of interest ✓, is too complex to work with directly, but
one is able to simulate x from a stochastic forward model
at fixed parameter settings ✓. The most common approach
to LFI or simulation-based parameter inference is Approxi-
mate Bayesian Computation (ABC), whose many variations
(see Beaumont et al. 2002 and Sisson et al. 2018 for a
review) repeatedly draw from the simulator and compare
the output with observed data xobs in real time to arrive at a
set of plausible parameter values consistent with xobs. With
computationally intensive simulations, however, a classical
ABC approach may not be practical. An alternative approach
to ABC rejection sampling is to use faster training-based
methods to assess the uncertainty about ✓ for any x first,
and then consider the specific case x = xobs.

From a statistical perspective, the right tool for quantifying
the uncertainty about y once x is observed is the conditional

density p(y|x). In a prediction context such as for photo-z prob-
lems, where heteroskedastic errors or multimodal responses may
occur, conditional density estimation (CDE) of the density p(z|x)
for the redshift z of individual galaxies given photometric data x
provides a more nuanced accounting of uncertainty than a point
estimate or prediction interval alone. CDE can also be used in LFI
where, in our notation, the parameters of interest ✓ take the role
of the ‘‘response’’ y. In such settings, one can apply training-based
approaches to forward-simulated data to estimate the posterior
probability distribution p(✓|xobs) of cosmological parameters ✓
given observed data xobs, and from these posteriors then derive,

e.g. posterior credible intervals of ✓ . Section 4.2 shows an exam-
ple of cosmological parameter inference using mock weak lensing
data. Here we follow Izbicki et al. (2014, 2019) to combine ABC
and CDE by directly applying CDE techniques (Section 2) and
loss functions (Section 3.1) to simulated data {(✓i, xi)}ni=1. Similar
works include performing LFI via CDE using Gaussian copulas (Li
et al., 2017; Chen and Gutmann, 2019) and random forests (Marin
et al., 2016). Other examples include neural density estimation
in LFI via mixture density networks and masked autoregressive
flows (Papamakarios and Murray, 2016; Lueckmann et al., 2017,
2019; Papamakarios et al., 2019; Greenberg et al., 2019; Alsing
et al., 2018, 2019).

Data in astronomy present a challenge to estimating condi-
tional densities, due to both the complexity of the underlying
physical processes and the complicated observational noise. Pre-
cision cosmology, for example, requires combining data from
different scientific probes, each affected by unique sources of
systematic uncertainty, to produce samples from complicated
joint likelihood functions with nontrivial covariances in a high-
dimensional parameter space (Krause et al., 2017; Joudaki et al.,
2017; Aghanim et al., 2018; van Uitert et al., 2018; Abbott et al.,
2019). In such situations, CDE methods that target a variety of set-
tings and non-standard data (images, correlation functions, mixed
data types) become especially valuable. However, for any given
data type, there is no one-size-fits-all CDE method. For example,
deep neural networks often perform well in settings with large
amounts of representative training data but in applications with
smaller training samples one may need a different tool. There is
also additional value in models that are interpretable and easy to
fit to the data at hand.

The goal of this paper is to provide statistical tools and open-
source software for nonparametric CDE and method assessment
appropriate for challenging data in a variety of inference scenar-
ios.

To our knowledge, existing CDE software either targets dis-
crete y (e.g., probabilistic classifiers or ordinal classification Frank
and Hall, 2001) or uses kernel density estimation (KDE) across all
data points to provide an estimate for a continuous y (Hyndman
et al., 2018). What distinguishes our methodology work from
others is that we are able to adapt virtually any training-based
prediction method to the problem of estimating full probability
distributions. By leveraging existing ML methods, we are hence
able to provide uncertainty prediction methods and software for
more general and complex data settings than ‘the computational
tools currently available in the literature. In this paper, we show-
case and provide Python and R code for four flexible CDE meth-
ods: NNKCDE, RFCDE/fRFCDE, FlexCode and DeepCDE.2 Each
CDE approach has particular usage for different settings of re-
sponse dimensionality, feature types, and computational require-
ments. Table 1 provides a high-level overview in the top panel,
and lists some properties of each method in the bottom panel.

A highlight of our software is that it makes uncertainty quan-
tification straightforward for users of standard open-source ma-
chine learning Python packages. As NNKCDE, RFCDE/fRFCDE,
FlexCode share the sklearn (Pedregosa et al., 2011) API (with
fit and predict methods), our methods are usable within the
sklearn ecosystem for, e.g., cross-validation and model selec-
tion. In addition, FlexCode is essentially a plug-in method where
the user can utilize any sklearn-compatible regression func-
tion. DeepCDE has implementations for both Tensorflow (Abadi
et al., 2015) and Pytorch (Paszke et al., 2019), two of the most
widely used deep learning frameworks.

2 All of these methods, except for DeepCDE, have occurred in previously
published or archived papers. Hence, we only briefly review the methods in
this paper and instead focus on software usage, algorithmic aspects, and the
settings under which each method can be applied.

N. Dalmasso, T. Pospisil, A.B. Lee et al. / Astronomy and Computing 30 (2020) 100362 3

Table 1
Top: Naming convention, high-level summary and hyper-parameters of CDE methods, along with references for further details and code examples.
Bottom: Comparison of CDE methods in terms of training capacity and compatibility with multivariate response and different types of features, with
capacities estimated based on input with around 100 features and a standard i5/i7/quad-core processor with 16GB of RAM. Note that less complex
methods (such as NNKCDE) tend to be easier to use, easier to interpret, and often perform better in settings with smaller training sets, whereas
more complex methods (such as DeepCDE) perform better in settings with larger (representative) training sets.
Method Name Summary Hyper-parameters Details

NNKCDE

Computes a KDE estimate of
Nearest Neighbor multivariate y using the nearest • Number of neighbors k Section 2.1
Kernel CDE neighbors of the evaluation point x • Kernel bandwidth h (Code: Appendix A.1)

in feature space.

RFCDE

Random forest that partitions
the feature space using a CDE loss. • Random forest hyperparams. Section 2.2

Random Forest CDE Constructs a weighted KDE estimate • Kernel bandwidth h (Code: Appendix A.2)
of multivariate y with weights
defined by leaves in the forest.

fRFCDE

RFCDE version suitable for functional • Random forest hyperparams.
functional Random features x. Partitions the feature • Kernel bandwidth h Section 2.2.1
Forest CDE space directly rather than • Partition parameter � (Code: Appendix A.2.1)

representing x as a vector.

FlexCode
Flexible Conditional Uses basis expansion of univariate y • Number of expansion coeffs. Section 2.3
Density Estimation to turn CDE into a series of • Selected regression method (Code: Appendix A.3)

univariate regression problems. hyperparams.

DeepCDE

Uses basis expansion of univariate
Deep Neural y similar to FlexCode, but learns • Number of expansion coeffs. Section 2.4
Networks CDE the expansion coefficients • Selected deep neural network (Code: Appendix A)

simultaneously using a deep architecture hyperparams.
neural network.

.

.

Method

Complexity

Method Capacity (# Training Pts) Multivariate Response Functional Features Image Features
NNKCDE Up to ⇠ 105 X
(f)RFCDE Up to ⇠ 106 X X
FlexCode Up to ⇠ 106 X
DeepCDE Up to ⇠ 108 X X

In addition to the CDE methods above, we provide the pack-
age cdetools, which can be used for tuning and assessing the
performance of CDE models on held-out validation data. CDE
method assessment is challenging per se because we never ob-
serve the true conditional probability density, merely samples
(observations) from it. Furthermore, whereas loss functions such
as the root-mean-squared error (RMSE) are typically used in
regression problems, they are not appropriate for the task of
uncertainty quantification of estimated probability densities. The
cdetools package provides two types of functions for method
assessment. First, it provides functions for computing a so-called
CDE loss function (defined by Eq. (4) in Section 3.1) for tuning
and assessing the quality of individual PDFs. Second, it provides
diagnostic functions that probe the population-level performance
of the PDFs. More specifically, we have included functions for
computing the Probability Integral Transform (PIT) and Highest
Posterior Density (HPD); these metrics check how well the final
density estimates on average fit the data in the tail and highest-
density regions, respectively (see Section 3.2, and Fig. 2 for a
visual sketch).

Organization of the paper. In Section 2, we introduce tools for
conditional density estimation (NNKCDE, RFCDE/fRFCDE, Flex-
Code, DeepCDE). In Section 3, we describe tools for model selec-
tion and diagnostics. Then, in Section 4, we illustrate our CDE and
method assessment tools for three different applications: photo-
z estimation, likelihood-free cosmological inference and spec-z
estimation. Python and R code usage examples can be found in
Appendix A.

Notation. We denote the true (unknown) conditional density
by p(y|x), whereas an estimate of the density is denoted by
bp(y|x). We represent the CDE loss function that measures the
discrepancy between the conditional density p and its estimatebp

by L(p,bp). Typically this loss cannot be computed directly because
it depends on unknown quantities; an estimate of the loss is
denoted by bL(p,bp). As before, we continue to use bold-faced
letters to denote vectors.

2. Overview of conditional density estimation tools

We start by briefly describing the conditional density estima-
tors in Table 1. Unless otherwise stated, we choose the tuning or
hyper-parameters by minimizing the CDE empirical loss in Eq. (5)
using cross-validation.

2.1. NNKCDE

Nearest-Neighbors Kernel CDE (NNKCDE; Izbicki et al. 2017,
Freeman et al. 2017) is a simple and easily interpretable CDE
method. It computes a kernel density estimate of y using the k

nearest neighbors of the evaluation point x. The model has only
two tuning parameters: the number of nearest neighbors k and
the bandwidth h of the smoothing kernel in y-space. Both tuning
parameters are chosen in a principled way by minimizing the CDE
loss on validation data.

More specifically, the kernel density estimate of y given x is
defined as

bp(y|x) = 1
k

kX

i=1

Kh

⇥
⇢(y, ysi(x))

⇤
, (1)

where Kh is a normalized kernel (e.g., a Gaussian function) with
bandwidth h, ⇢ is a distance metric, and si(x) is the index of the
ith nearest neighbor of x. It is essentially a smoother version of
the histogram estimator proposed by Cunha et al. (2009) in that
it approximates the density with a smooth continuous function
rather than by binning.

4 N. Dalmasso, T. Pospisil, A.B. Lee et al. / Astronomy and Computing 30 (2020) 100362

We provide the NNKCDE3 software in both Python and R
(Pospisil and Dalmasso, 2019a), with examples in Section
Appendix A.1. NNKCDE can accommodate any number of training
examples. However, selecting tuning parameters scales quadrati-
cally in k, the number of nearest neighbors, which prohibits using
k & 103. Our implementation (Izbicki et al. 2019, Appendix D) is
computationally more efficient than standard nearest-neighbor
kernel smoothers. For instance, we are able to efficiently eval-
uate the loss function in Eq. (5) on large validation samples
by expressing the first integral in terms of convolutions of the
kernel function; these have a fast-to-compute closed solution for
a Gaussian kernel.

2.2. RFCDE

Random forests (RFs, Breiman 2001) is one of the best off-
the-shelf solutions for regression and classification problems. It
builds a large collection of decorrelated trees, where each tree
is a data-based partition of the feature space. The trees are then
averaged to yield a prediction. RFCDE, introduced by Pospisil
and Lee (2018), is an extension of random forests to conditional
density estimation and multivariate responses. Like NNKCDE, it
computes a kernel density estimate of y but with nearest neigh-
bor weightings defined by the location of the evaluation point x
relative to the leaves in the random forest. RFCDE inherits the
advantages of random forests in that it can handle mixed-typed
data. It also does not require the user to specify distances or
similarities between data points, and it has good performance
while remaining relatively interpretable.

The main departure from other random forest algorithms is
our criterion for feature space partitioning decisions. In regression
contexts, the splitting variable and split point are typically chosen
so as to minimize the mean-squared-error loss. In classification
contexts, the splits are typically chosen so as to minimize a classi-
fication error. Existing random forest density estimation methods
such as quantile regression forests by Meinshausen (2006) and
the TPZ algorithm by Carrasco Kind and Brunner (2013) use
the same tree structure as regression and classification random
forests, respectively. RFCDE, however, builds trees that mini-
mize the CDE loss (see Eq. (5)), allowing the forest to adapt to
structures in the conditional density; hence overcoming some of
the limitations of the usual regression approach for data with
heteroskedasticity and multimodality. In addition, RFCDE does
not require discretizing the response as in TPZ, thereby providing
more accurate results at a lower cost for continuous responses,
especially in the case of multivariate continuous responses where
binning is problematic. See Pospisil and Lee (2018) for further
examples and comparisons.

Another unique feature of RFCDE is that it can handle mul-
tivariate responses with joint densities by applying a weighted
kernel smoother to y. This added feature enables analysis of com-
plex conditional distributions that describe relationships between
multiple responses and features, or equivalently between multi-
ple parameters and observables in an LFI setting. Like quantile
regression forests, the RFCDE algorithm takes advantage of the
fact that random forests can be viewed as a form of adaptive
nearest-neighbor method with the aggregated tree structures
determining a weighting scheme. This weighting scheme can then
be used to estimate the conditional density p(y|x), as well as the
conditional mean and quantiles, as in quantile regression forests
(but for CDE-optimized trees). As mentioned above, RFCDE com-
putes the latter density by a weighted kernel density estimate
(KDE) in y using training points near the evaluation point x. These
distances are effectively defined by how often a training point xi

3 https://github.com/tpospisi/nnkcde.

belongs to the same leaf node as x in the forest (see Equation 1
in Pospisil and Lee 2018 for details).

Despite the increased complexity of our CDE trees, RFCDE still
scales to large data sets because of an efficient computation of
splits via orthogonal series. Moreover, RFCDE extends the density
estimates on new x to the multivariate case through the use of
multivariate kernel density estimators (Epanechnikov, 1969). In
both the univariate and multivariate cases, bandwidth selection
can be handled by either plug-in estimators or by tuning using a
density estimation loss.

For ease of use in the statistics and astronomy communities,
we provide RFCDE4 in both Python and R, which call a common
C++ implementation of the core training functions that can easily
be wrapped in other languages (Pospisil and Dalmasso, 2019b).

Remark. Estimating a CDE loss is an inherently harder task
than calculating the mean squared error (MSE) in regression.
As a consequence, RFCDE might not provide meaningful tree
splits in settings with a large number of noisy features. In such
settings, one may benefit from combining a regular random for-
est tree structure (optimized for regression) with a weighted
kernel density estimator (for the density calculation). See Sec-
tion 4.3 for an application to functional data along with software
implementation.5

2.2.1. fRFCDE
In addition the RFCDE package includes fRFCDE, a variant of

RFCDE (Pospisil and Lee, 2019), that can accommodate functional
features x by partitioning in the continuous domain of such
features. The spectral energy distribution (SED) of a galaxy is
its energy as a function of continuous wavelength � of light;
hence it can be viewed as functional data. Another example of
functional data is the shear correlation function of weak lensing,
which measures the mean product of the shear at two points
as a function of a continuous distance r between those points.
Similarly, any function of continuous time is an example of func-
tional data. Treating functional features (like spectra, correlation
functions or images) as unordered multivariate vectors on a grid
suffers from a curse of dimensionality. As the resolution of the
grid becomes finer the dimensionality of the data increases but
little additional information is added, due to high correlation
between nearby grid points. fRFCDE adapts to this setting by
partitioning the domain of each functional feature (or curve) into
intervals, and passing the mean values of the function in each
interval as input to RFCDE. Feature selection is then effectively
done over regions of the domain rather than over single points.
More specifically, the partitioning in fRFCDE is governed by the
parameter µ of a Poisson process, with each functional feature
entering as a high-dimensional vector x = (x1, . . . , xd). Starting
with the first element of the vector, we group the first Poisson(µ)
elements together. We then repeat the procedure sequentially
until we have assigned all d elements into a group; this effectively
partitions the function domain into disjoint intervals {(li, hi)}. The
function mean values or smoothed brightness measurementsexi ⌘R

hi

li
f (�)d� of each interval are finally treated as new inputs to

a standard (vectorial) RFCDE tree. The splitting of the smoothed
predictors exi is done independently for each tree in the forest.
Other steps of fRFCDE, such as the computation of variable
importance, also proceed as in (vectorial) RFCDE but with the
averaged values of a region as inputs. As a result, fRFCDE has the
capability of identifying the functional inputs and the regions in
the input domain that are important for estimating the response

4 https://github.com/tpospisi/RFCDE.
5 Available at https://github.com/Mr8ND/cdetools_applications/spec_z/.

N. Dalmasso, T. Pospisil, A.B. Lee et al. / Astronomy and Computing 30 (2020) 100362 5

Fig. 1. A schematic diagram of RFCDE (top row) and fRFCDE (bottom row) applied to a galaxy spectrum from Vanderplas et al. (2012). Top row: RFCDE treats the
intensity xi at each recorded wavelength �i of the spectrum as a feature or ‘‘input’’ to the random forests algorithm — the blue vertical dashed lines indicate every
100th recorded wavelength. RFCDE then builds an ensemble of CDE trees, where each tree partitions the feature space according to the CDE loss, as illustrated in the
top right figure for features x1 and x2. Bottom row: fRFCDE instead groups nearby measurements together where the group divisions are defined by a Poisson process
with parameter µ (vertical green dashed lines, left figure). The new smoothed features exi are computed by integrating the intensity over the grouped wavelengths.
A forest of CDE trees is then built using the same construction as in RFCDE but with the smoothed features as inputs (bottom right figure). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

y. Fig. 1 shows schematically the differences and similarities in
construction between standard RFCDE and its fRFCDE variant.

The fRFCDE method is as scalable as standard random forests,
accommodating training sets on the order of 106. As the examples
in Section 4.3 show, we can obtain substantial gains with a
functional approach, both in terms of statistical performance (that
is, CDE loss) and computational time. In addition, the change in
code syntax is minimal, as one only needs to pass the Poisson
µ parameter as the flambda argument during the forest ini-
tialization. Examples in Python and R are provided in Appendix
A.2.1.

2.3. FlexCode

Introduced by Izbicki and Lee (2017), FlexCode6 is a CDE
method that uses a basis expansion for the univariate response y

and poses CDE as a series of univariate regression problems. The
main advantage of this method is its flexibility as any regression
method can be applied toward CDE, enabling us to tailor our
choice of regression method to the intrinsic structure and type
of data at hand.

More precisely, let
�
�j(y)

j
be an orthonormal basis like a

Fourier or wavelet basis for functions of y 2 R. The key idea of
FlexCode is to express the unknown density p(y|x) as a basis
expansion

p(y|x) =
X

j

�j(x)�j(y). (2)

By the orthogonality property of the basis, the (unknown) expan-
sion coefficients {�j(x)}j are then just orthogonal projections of
p(y|x) onto the basis vectors. We can estimate these coefficients

6 https://github.com/tpospisi/FlexCode (Python) and https://github.com/
rizbicki/FlexCoDE (R).

using a training set of (x, y) data by regressing the transformed
response variables �j(y) on predictors x for every basis function j

(see Izbicki and Lee, 2017 Equation 2.2, for details). The number
of basis function nbasis is chosen by minimizing a CDE loss function
on validation data. The estimated density,

P
nbasis

j=1
b�j(x)�j(y), may

contain small spurious bumps induced by the Fourier approxi-
mation and may not integrate to one. We remove such artifacts
as described in Izbicki and Lee (2016) by applying a threshold-
ing parameter � chosen via cross-validation. FlexCode turns a
challenging density estimation problem into a simpler regression
problem, where we can choose any regression method that fits
the problem at hand.

To provide a concrete example, for high-dimensional x (such
as galaxy spectra) we can use methods such as sparse or spec-
tral series (‘‘manifold’’) regression methods (Tibshirani, 1996;
Ravikumar et al., 2009; Lee and Izbicki, 2016); see Section 4.3
for an example with FlexCode-Series. For multi-probe stud-
ies with mixed data types, we can use random forests regres-
sion (Breiman, 2001). On the other hand, large-scale photometric
galaxy surveys such as LSST require methods that can work with
data frommillions, if not billions, of galaxies. Schmidt et al. (2020)
present the results of an initial study of the LSST Dark Energy
Science Collaboration (LSST-DESC). Their initial data challenge
(‘‘Photo-z DC 1’’) compares the CDEs of a dozen photo-z codes
run on simulations of LSST galaxy photometry catalogs in the
presence of complete, correct, and representative training data.
FlexZBoost, a version of FlexCode based on the scalable gra-
dient boosting regression technique by Chen and Guestrin (2016),
was entered into the data challenge because of the method’s abil-
ity to scale to massive data. In the DC1 analysis, FlexZBoostwas
among the strongest performing codes according to established
performance metrics of such PDFs and was one of only two codes
to beat the experimental control under a more discriminating
metric, the CDE loss.

6 N. Dalmasso, T. Pospisil, A.B. Lee et al. / Astronomy and Computing 30 (2020) 100362

For massive surveys such as LSST, FlexCode also has another
advantage compared to other CDE methods, namely its com-
pact, lossless storage format. Juric et al. (2017) establishes that
LSST has allocated ⇠100 floating point numbers to quantify the
redshift of each galaxy. As is shown in Schmidt et al. (2020),
the myriad methods for deriving photo-z PDFs yield radically
different results, motivating a desire to store the results of more
than one algorithm in the absence of an obvious best choice.
For the photo-z PDFs of most codes, one may need to seek a
clever storage parameterization to meet LSST’s constraints (Car-
rasco Kind and Brunner, 2014; Malz et al., 2018), but FlexCode
is virtually immune to this restriction. Since FlexCode relies on
a basis expansion, one only needs to store nbasis coefficients per
target density for a lossless compression of the estimated PDF
with no need for binning. Indeed, for DC1, we can with FlexZ-
Boost reconstruct our estimate bp(z|x) at any resolution from
estimates of the first 35 coefficients in a Fourier basis expansion.
In other words, FlexZBoost enables the creation and storage of
high-resolution photo-z catalogs for several billion galaxies at no
added cost.

Our public implementation of FlexCode– available in both
Python (Pospisil et al., 2019) and R (Izbicki and Pospisil, 2019),
respectively – cross-validates over regression tuning parameters
(such as the number of nearest neighbors k in FlexCode-kNN)
and computes the FlexCode coefficients in parallel for further
time savings. The computational complexity of FlexCode will be
the same as nbasis parallel individual regressions. In particular, the
scalability of FlexCode is determined by the underlying regres-
sion method. A scalable method like XGBoost leads to scalable
FlexCode fitting. In the Python version of the code, the user
can choose between the following regression methods: XGBoost
for FlexZBoost but also nearest neighbors, LASSO (Tibshirani,
1996), and random forests regression (Breiman, 2001). In the
R version, the following choices are available: XGBoost, near-
est neighbors, LASSO, random forests, Nadaraya–Watson kernel
smoothing (Nadaraya, 1964; Watson, 1964), sparse additive mod-
els (Ravikumar et al., 2009), and spectral series (‘‘manifold’’)
regression (Lee and Izbicki, 2016). In both implementations, the
user may also use a custom regression method; we illustrate
how this can be done with a vignette in both packages. For
the Python implementation, the user can add any custom re-
gression method following the sklearn API, i.e., with fit and
predict methods. Examples in both languages are presented in
Appendix A.3.

2.4. DeepCDE

Recently, neural networks have reemerged as a powerful tool
for prediction settings where large amounts of representative
training data are available; see LeCun et al. (2015) and Good-
fellow et al. (2016) for a full review. Neural networks for CDE,
such as Mixture Density Networks (MDNs; Bishop 1994) and
variational methods (Tang and Salakhutdinov, 2013; Sohn et al.,
2015), usually assume a Gaussian or some other parametric form
of the conditional density. MDNs have lately also been used for
photometric redshift estimation (D’Isanto and Polsterer, 2018;
Pasquet et al., 2019) and for direct estimation of likelihoods and
posteriors in cosmological parameter inference (see Alsing et al.,
2019 and references within).

DeepCDE7 (Dalmasso and Pospisil, 2019) takes a different, fully
nonparametric approach to CDE. It combines the advantages of
basis expansions with the flexibility of neural network architec-
tures, allowing for data types like image features and time-series
data. DeepCDE is based on the orthogonal series representation

7 https://github.com/tpospisi/DeepCDE.

in FlexCode, given in Eq. (2), but rather than relying on regres-
sion methods to estimate the expansion coefficients in Eq. (2),
DeepCDE computes the coefficients {�i(x)}Bi=1 jointlywith a neural
network that minimizes the CDE loss in Eq. (4). Indeed, one can
show that for an orthogonal basis, the problem of minimizing
this CDE loss is (asymptotically) equivalent to finding the best
basis coefficients in FlexCode under mean squared error loss for
the individual regressions; see Appendix C for a proof. The value
of this result is that DeepCDE with a CDE loss directly connects
prediction with uncertainty quantification, implying that one can
leverage the state-of-the-art deep architectures for an application
at hand toward uncertainty quantification for the same prediction
setting.

From a neural network architecture perspective, DeepCDE
only adds a linear output layer of coefficients for a series expan-
sion of the density according to

bp(y|x) =
BX

j=1

b�j(x)�j(y), (3)

where {�j(y)}Bj=1 is an orthogonal basis for functions of y 2 R. Like
FlexCode, we normalize and remove spurious bumps from the
final density estimates according to the procedure in Section 2.2
of Izbicki and Lee (2016).

The greatest benefit of DeepCDE is that it can be implemented
with both convolutional and recurrent neural network architec-
tures, extending to both image and sequential data. For most deep
architectures, adding a linear layer represents a small modifica-
tion, and a negligible increase in the number of parameters. For
instance, with the AlexNet architecture (Krizhevsky et al., 2012),
a widely used, relatively shallow convolutional neural network,
adding a final layer with 30 coefficients for a cosine basis only
adds ⇠120,000 extra parameters. This represents a 0.1% increase
over the 62 million already existing parameters, and hence a
negligible increase in training and prediction time. Moreover, the
CDE loss for DeepCDE is especially easy to evaluate; see Appendix
C for details.

We provide both TensorFlow and Pytorch implementations
of DeepCDE (Dalmasso and Pospisil, 2019). We also include ex-
amples that shows how one can easily build DeepCDE on top
of AlexNet (Krizhevsky et al., 2012); in this case, for the task
of estimating the probability distribution p(y|x) of the correct
orientation y of a color image x. Note that Fischer et al. (2015)
use AlexNet for the corresponding regression task of predicting
the orientation y for a color image x but without quantifying the
uncertainty in the predictions.

3. How to assess method performance

After fitting CDEs, it is important to assess the quality of our
models of uncertainty. For instance, after computing photo-z PDF
estimates bp(z|x) for some galaxies, one may ask whether these
estimates accurately quantify the true uncertainty distributions
p(z|x). Similarly, in the LFI task, a key question is whether an es-
timate of the posterior distribution,bp(✓|xobs) of the cosmological
parameters is close enough to the true posterior p(✓|xobs) given
the observations xobs.

We present two method-assessment tools suitable to differ-
ent situations, which are complementary and can be performed
simultaneously, with public implementations in the cdetools8
package in both Python and R (Dalmasso et al., 2019). First,
we describe a CDE loss function that directly provides relative
comparisons between conditional density estimators, such as the
methods presented in Section 2 or, equivalently, between a set of

8 https://github.com/tpospisi/cdetools.

N. Dalmasso, T. Pospisil, A.B. Lee et al. / Astronomy and Computing 30 (2020) 100362 7

Fig. 2. Schematic diagram of the construction of the Probability Integral Transform (PIT, left) and the Highest Probability Density (HPD, right) values for the estimated
density bp(y|x) at x = xval, where yval is the response at x = xval. In the plot to the right, the highlighted segments on the y-axis form the so-called highest density
region (HDR) of y|xval. The PIT and HPD values correspond to the area of the tail versus highest density region, respectively, of the estimate; here indicated by the
shaded areas. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

models (for the same method) with different tuning parameters.
Second, we describe visual diagnostic tools, such as Probability
Integral Transforms (PIT) and Highest Probability Density (HPD)
plots, that can provide insights on the overall goodness-of-fit of
a given estimator to observed data.

3.1. CDE loss

Here we briefly review the CDE loss from Izbicki and Lee
(2016) for assessing conditional density estimators and discuss
it in the context of the cosmology LFI case.

The goal of a loss function is to provide relative compar-
isons between different estimators, so that it is easy to directly
choose the best fitted model among a list of candidates. Given an
estimatebp of p, we define the CDE loss by

L(bp, p) =
ZZ

[bp(y|x) � p(y|x)]2 dydP(x), (4)

where P(x) is the marginal distribution of the features x. This loss
is the CDE analog to the standard mean squared error (MSE) in
standard regression. The weighting by the marginal distribution
of the features emphasizes that errors in the estimation of y for
unlikely features x are less important. The CDE loss cannot be
directly evaluated because it depends on the unknown true den-
sity p(z|x). However, one can estimate the loss (up to a constant
determined by the true p) by

bL(bp, p) = 1
n

nX

i=1

Z
bp(y|xte

i
)2dy � 2

n

nX

i=1

bp(yte
i
|xte

i
), (5)

where
�
(xte

i
, yte

i
)
 n
i=1 represents our validation or test data, i.e., a

held-out set not used to constructbp. In our implementation, the
function cde_loss returns the estimated CDE loss as well as an
estimate of the standard deviation or the standard error (SE) of
the estimated loss.

CDE loss for LFI. In LFI settings, we use a slightly different
version of the CDE loss in Eq. (4). Because the goal (in ABC) is to
approximate the posterior density p(✓|xobs) at fixed x = xobs, a
natural evaluation metric is the integrated squared error loss
Z

[bp(✓|xobs) � p(✓|xobs)]2 d✓ (6)

of the conditional density at xobs only. Estimating this loss can
however be tricky as only a single instance of data with x = xobs
is available in practice. Hence, Izbicki et al. (2019) approximates
Eq. (6) by computing the empirical loss bL(bp, p) in Eq. (5) over
a restricted subset of the validation data that only includes the
xte
i

points that fall in an ✏-neighborhood of xobs, where ✏ is the
tolerance of the ABC rejection algorithm. The detailed analysis of
this approach can be found in Izbicki et al. (2019).

3.2. PIT and HPD diagnostics

The CDE loss function is a relative measure of performance
that cannot address absolute goodness-of-fit. To quantify overall
goodness-of-fit, we examine how well calibrated an ensemble of
conditional density estimators are on average, over validation or
test data

�
(xte

i
, yte

i
)
 n
i=1. For ease of notation, we will in this section

denote xte
i
and yte

i
for a generic i by xval and yval.

Given a true probability density p(y|x) = �0 of a variable y
conditioned on data x, an estimated probability densitybp(y|x) =
� cannot be well-calibrated unless � ⇡ �0.

Built on the same logic, the probability integral transform
(PIT; Polsterer et al. 2016)

PIT (xval, yval) =
Z

yval

�1
bp(y|xval)dy (7)

assesses the calibration quality of an ensemble of CDEs for scalar y
representing the cumulative distribution function (CDF) of
bp(y|xval) evaluated at y = yval; this PIT value corresponds to the
shaded area in Fig. 2, left. A statistically self-consistent popula-
tion of densities has a uniform distribution of PIT values, and
deviations from uniformity indicate inaccuracies of the estimated
PDFs. Overly broad CDEs manifest as under-representation of
the lowest and highest PIT values, whereas overly narrow CDEs
manifest as over-representation of the lowest and highest values.

However, PIT values do not easily generalize to multiple re-
sponses. For instance, for a bivariate response y = (z, ⌘), the
quantity

R
zval
�1

R ⌘val
�1 p(z, ⌘|xval)dzd⌘ is not in general uniformly dis-

tributed (Genest and Rivest, 2001). An alternative statistic that
easily generalizes to multivariate y is the highest probability
density value (HPD; Izbicki et al. 2017, Appendix A):

⇠ (xval, yval) =
Z

y:bp(y|xval)�bp(yval|xval)
bp(y|xval)dy. (8)

The HPD value is based on the definition of the highest density

region (HDR, Hyndman 1996) of a random variable y; that is, the
subset of the sample space of y where all points in the region
have a probability above a certain value. The HDR of y|xval can
be seen as a region estimate of y when x = xval is observed.
In words, the set {y : bp(y|xval) � bp(yval|xval)} is the smallest
HDR containing the point yval, and the HPD value is simply the
probability of such a region. Fig. 2, right, shows a schematic
diagram of the HPD value (green shaded area) and HDR region
(highlighted segments on the y-axis) for the estimated density
bp(y|xval). The HPD value ⇠ (xobs, yval) can also be viewed as a mea-
sure of how plausible yval is according tobp(y|xval) and is directly
related to the Bayesian analog of p-values or the e-value (Pereira
and Stern, 1999). One can show (Harrison et al., 2015) that even
for multivariate y, the HPD values for validation data follow a

8 N. Dalmasso, T. Pospisil, A.B. Lee et al. / Astronomy and Computing 30 (2020) 100362

Fig. 3. (a)–(b) Histograms of PIT and HPD values for Teddy photo-z data. Both versions of RFCDE as well as the marginal distribution have a uniform distribution
indicating that the conditional density estimates are well-calibrated on average. FlexZBoost exhibits an overrepresentation of 0 and 1 values which indicate overly
narrow CDEs. (c)–(d) Probability–Probability (P–P) plots of HPD and PIT values. Both sets of values are computed over data in the test set and their empirical
distribution is plotted against the uniform U(0, 1) distribution; i.e., the ‘‘theoretical distribution’’ of the HPD and PIT values when bp(z|x) = p(z|x). If the estimated
CDEs are well calibrated, the empirical and theoretical distributions should coincide and all points should be close to the identity line. As in the top panel, the P–P
plots indicate a good fit for all methods including the clearly misspecified ‘‘Marginal’’ model.

U(0, 1) distribution if the CDEs are well calibrated on the pop-
ulation level. Thus, these values can also be used for assessing
the fit of conditional densities in the same way as PIT values. In
our implementation the functions pit_coverage(cde_test,
y_grid, y_test) and hpd_coverage(cde_test, y_grid,
y_test), respectively, calculate PIT and HPD values for CDE
estimates cde_test using the grid y_grid with observed values
y_test.

The PIT and HPD are not without their limitations, however,
as demonstrated in the control case of Schmidt et al. (2020) and
Fig. 3 of Section 4.1 here. Because the PIT and HPD values can
be uniformly distributed even if p(y|x) is not well estimated,
they must be used in conjunction with loss functions for method
assessment. A popular way of visualizing PIT and HPD diagnostics

for the entire population is through probability–probability plots or
P–P plots of the empirical distribution of the (PIT or HPD) statistic
versus its distribution under the hypothesis thatbp(y|x) = p(y|x);
henceforth, we will refer to the latter Uniform(0,1) distribution
as the ‘‘theoretical’’ distribution of PIT or HPD. An ideal P–P plot
has all points close to the identity line where the ‘‘empirical’’
and ‘‘theoretical’’ distributions are the same. Note that HPD P–P
plots, in particular, are valuable calibration tools if our goal is to
calibrate the estimated densities so that the computed predictive
regions have the right coverage.

Fig. 3(c)–(d) contains example P–P plots for the PIT and HPD
values of photo-z estimators, where the empirical (observed)
distribution is close to the theoretical (ideal) distribution.

N. Dalmasso, T. Pospisil, A.B. Lee et al. / Astronomy and Computing 30 (2020) 100362 9

4. Applications in astronomy

We demonstrate9 the breadth of our CDE methods in three
different astronomical use cases.

1. Photo-z estimation: univariate response with multivari-
ate input. This is the standard prediction setting in which
all four methods apply. In Section 4.1, we apply the meth-
ods to the Teddy photometric redshift data (Beck et al.,
2017), and illustrate the need for loss functions to prop-
erly assess PDF estimates of redshift z given photometric
colors x.

2. Likelihood-free cosmological inference: multivariate re-
sponse. For multiple response components we want to
model the often complicated dependencies between these
components; this is in contrast to approaches which model
each component separately, implicitly introducing an as-
sumption of conditional independence. In Section 4.2, we
use an example of LFI for simulated weak lensing shear
data to show how NNKCDE and RFCDE can capture more
challenging bivariate distributions with curved structures;
in this toy example y represents cosmological parameters
(⌦M , �8) in the ⇤CDM-model, and x represents (coarsely
binned) weak lensing shear correlation functions.

3. Spec-z estimation: functional input. Standard prediction
methods, such as random forests, do not typically fare
well with functional features, simply treating them as
unordered vectorial data and ignoring the functional struc-
ture. However, often there are substantial benefits to ex-
plicitly taking advantage of that structure as in fRFCDE.
In Section 4.3, we compare the performance of a vectorial
implementation of RFCDE with fRFCDE and FlexCode-
Series for a spectroscopic sample from the Sloan Digital
Sky Survey (SDSS; Alam et al. 2015). The input x is here a
high-resolution spectrum of a galaxy, and the response is
the galaxy’s redshift z.

Throughout this section we will report CDE loss mean and
standard error for each method, using 95% Gaussian confidence
intervals for performance comparison. Since the CDE loss is an
empirical mean and the test size is reasonably large in all the
examples, the validity of this approximation is guaranteed by the
central limit theorem.

4.1. Photo-z estimation: Univariate response with multivariate input

Here we estimate photo-z posterior PDFs p(z|x) using repre-
sentative training and test data (Samples A and B, respectively)
from the Teddy catalog by Beck et al. (2017).10 These data include
74309 training and 74557 test observations. Each observation x
has five features: the magnitude of the r-band and the pairwise
differences or ‘‘colors’’ u � g , g � r , r � i, and i � z.

Among the chief sources of uncertainty affecting photo-zs
estimated by ML techniques are the incompleteness and non-
representativity of training sets, defined by the mismatch in the
distributions of training and test data in z and x, which may be
extreme to the point of not guaranteeing mutual coverage. Real-
istically modeling incompleteness is highly challenging, requiring
both simulations of SEDs and of the observational conditions of
a given survey, which is outside the scope of this work. Ac-
counting for redshift incompleteness is not a lost cause and
may be accomplished by extrapolating outside of the training

9 Code for these examples is publicly available at https://github.com/Mr8ND/
cdetools_applications.
10 Data available at https://github.com/COINtoolbox/photoz_catalogues.

Table 2
Method comparison via the CDE loss of Eq. (5) with estimated standard error
(SE) and the storage space for each galaxy’s photo-z CDE. As FlexZBoost and
DeepCDE are basis expansion methods, we need only to store the estimated
coefficients for a lossless compression of the CDEs; the other CDEs are discretized
to 200 bins.
Method CDE loss ± SE Storage (single CDE)
Marginal �3.192 ± 0.007 200 floats (1.6 KB)
RFCDE-Limited �11.038 ± 0.047 200 floats (1.6 KB)
NNKCDE �12.139 ± 0.043 200 floats (1.6 KB)
FlexZBoost �12.272 ± 0.044 30 coeffs (0.24 KB)
DeepCDE �12.821 ± 0.04 31 coeffs (0.25 KB)
RFCDE �13.108 ± 0.052 200 floats (1.6 KB)

range by abandoning standard instance-based ML algorithms (see
e.g., Leistedt and Hogg, 2016). Certain types of selection bias,
known as covariate shift, can also be corrected by importance
weights in the CDE loss (Izbicki et al., 2017; Freeman et al., 2017);
see Appendix D for details and code. However, for simplicity,
in this paper we consider only representative training sets with
no disparity in color-space coverage, putting this demonstration
on equal footing with all previous comparisons of photo-z PDF
methods.

We fit NNKCDE, RFCDE, DeepCDE, and FlexZBoost to the
data. In addition we fit an RFCDE model, ‘‘RFCDE-Limited’’, re-
stricted to the first three of the five features, as a toy model which
fails to extract some information from the features, allowing us to
showcase the difference between PIT or HPD diagnostics and the
CDE loss function. For DeepCDE we use a three-layer deep neural
network with linear layers and reLu activations with 25 neurons
per layers, trained for 10,000 epochs with Adam (Kingma and
Ba, 2014). As our goal is to showcase its applicability we do not
optimize the neural architecture (e.g., number of layers, number
of neurons per layer, activation functions) nor the learning pa-
rameters (i.e., number of epochs, learning rate, momentum). To
illustrate our validation methods, we also include the marginal
distribution bp(z) = 1

n

P
n

i=1bp(z|xi) as an estimate of individ-
ual photo-z distributions p(z|x). This estimate will be the same
regardless of x.

Table 2 and Fig. 4 present the estimated CDE loss of Eq. (5)
with estimated standard error (SE), as well as the storage space
for each galaxy’s photo-z CDE. Fig. 3 shows that the different
models, including the clearly misspecified ‘‘Marginal’’ model,
achieve comparable performance on goodness-of-fit diagnostics.
However, Table 2 and Fig. 4 show the discriminatory power of
the CDE loss function, which distinguishes the methods from
one another. This emphasizes the need for method comparison
through loss functions in addition to goodness-of-fit diagnostics.
We note that the ranking in CDE loss also correlates roughly
with the quality of the point estimates, as shown in Appendix
B. The LSST-DESC PZ DC1 paper (Schmidt et al., 2020) draws
similar conclusions from a comprehensive photo-z code compar-
ison where the ‘‘Marginal’’ model (there referred to as trainZ
photo-z PDF estimator, the experimental control) outperformed
all codes when using traditional metrics for assessing photo-z
PDF accuracy. Indeed, of the metrics considered in DC1, the CDE
loss was the only metric that could appropriately penalize the
pathological trainZ.

4.2. Likelihood-free cosmological inference: Multivariate response

To showcase the ability to target joint distributions, we ap-
ply NNKCDE and RFCDE to the problem of estimating multi-
variate posteriors p(✓|xobs) of the cosmological parameters in a
likelihood-free setting via ABC–CDE (Izbicki et al., 2019).

ABC is an approach to parameter inference in settings where
the likelihood is not tractable but we have a forward model that

10 N. Dalmasso, T. Pospisil, A.B. Lee et al. / Astronomy and Computing 30 (2020) 100362

Fig. 4. Method comparison for Teddy photo-z data using CDE loss from Eq. (5). Dots provide the mean loss, while the upper and lower error bars correspond to
±2 standard deviations.

can simulate data x under fixed parameter settings ✓. The sim-
plest form of ABC is the ABC rejection sampling algorithm, where
a set of parameters is first drawn from a prior distribution. The
simulated data x is accepted with tolerance " � 0 if d(x, xobs)
" for some distance metric d (e.g., the Euclidean distance) that
measures the discrepancy between the simulated data x and
observed data xobs. The outcome of the ABC rejection algorithm
for small enough ✏ is a sample of parameter values approxi-
mately distributed according to the desired posterior distribution
p(✓|xobs).

The basic idea of ABC–CDE is to improve the ABC estimate
– and hence reduce the number of required simulations – by
using the ABC sample/output as input to a CDE method tuned
with the CDE loss restricted to a neighborhood of xobs defined
by the tolerance ✏ (Izbicki et al., 2019, Equation 3). Hence, in
ABC–CDE, our CDE method can be seen as a post-adjustment
method: it returns an estimatebp(✓|x) which we evaluate at the
point x = xobs to obtain a more accurate approximation of
p(✓|xobs). This could also be beneficial in an active learning set-
ting where the posterior distribution is used to identify relevant
regions of the parameter space (e.g., Lueckmann et al., 2019;
Papamakarios et al., 2019; Alsing et al., 2019).

In this example, we consider the problem of cosmological pa-
rameter inference via cosmic shear, caused by weak gravitational
lensing inducing a distortion in images of distant galaxies. The
size and direction of the distortion is directly related to the size
and shape of the matter distribution along the line of sight, which
varies across the universe. We use shear correlation functions to
constrain the dark matter density ⌦M and matter power spec-
trum normalization �8 parameters of the ⇤CDM cosmological
model, which predicts the properties and evolution of the large
scale structure of the matter distribution. For further background
see Hoekstra and Jain (2008), Munshi et al. (2008) and Mandel-
baum (2018). Here we use the GalSim11 toolkit (Rowe et al.,
2015) to generate simplified galaxy shears distributed according
to a Gaussian random field determined by (⌦M , �8). The binned
shear correlation functions serve as our input data or summary
statistics x. For the inference, we assume uniform priors ⌦M ⇠
U(0.1, 0.8) and �8 ⇠ U(0.5, 1.0) and fix h = 0.7, ⌦b = 0.045,
z = 0.7.

The top row of Fig. 5 shows the estimated bivariate posterior
distribution of ✓ = (⌦M , �8) from ABC rejection sampling only, at
varying acceptance rates (20%, 50%, and 100%). An acceptance rate

11 https://github.com/GalSim-developers/GalSim.

Table 3
Performance of ABC, NNKCDE, RFCDE in LFI settings with simulated weak lensing
data in terms of the surrogate CDE loss.
Method \
acceptance rate

CDE loss ± SE (⇥10�5)

20% 50% 100%
ABC �0.686 ± 0.009 �0.392 ± 0.004 �0.227 ± 0.001
NNKCDE �1.652 ± 0.022 �1.199 ± 0.016 �0.844 ± 0.010
RFCDE �4.129 ± 0.063 �3.698 ± 0.064 �2.817 ± 0.055

of 100% just returns the (uniform) ABC prior distribution, whereas
the ABC posteriors for smaller acceptance rates (that is, smaller
values of ") concentrate around the parameter degeneracy curve
(shown as a dashed line) on which the data are indistinguishable.
The second and third rows show the estimated posteriors when
we, respectively, improve the initial ABC estimate by applying
NNKCDE and RFCDE tuned with our CDE surrogate loss. A result
that is apparent from the figure is that NNKCDE and RFCDE fit-
ted with a CDE loss are able to capture the degeneracy curve
at a larger acceptance rate, that is, for a smaller number of
simulations, than when using ABC only.

We also have a direct measure of performance via the CDE loss
and can adapt to different types of data by leveraging different
CDE codes. Table 3 shows how the methods compare in terms of
the surrogate loss. While decreasing the acceptance rate benefits
all methods, it is clear that CDE-based approaches have better
performance in all cases.

4.3. Spec-z estimation: Functional input

In this example, we compare CDE methods in the context
of spectroscopic redshift prediction using 2812 high-resolution
spectra from the Sloan Digital Sky Survey (SDSS) Data Release 6
(preprocessed with the cuts of Richards et al. 2009), correspond-
ing to features x of flux measurements at d = 3501 wavelengths.
The high-resolution spectra x can be seen as functional inputs
on a continuum of wavelength values. Spectroscopic redshifts (or
redshifts z predicted from spectra x) tend to be both accurate
and precise, so the density p(z|x) is well-approximated by a delta
function at the true redshift. For the purposes of illustrating the
use of the CDE codes, we define a noisified redshift zi = z

SDSS
i

+✏i,
where ✏i are independent and identically distributed variables
drawn from a normal distribution N(0, 0.02) and z

SDSS
i

is the true
redshift of galaxy i provided by SDSS. Thus the conditional density

N. Dalmasso, T. Pospisil, A.B. Lee et al. / Astronomy and Computing 30 (2020) 100362 11

Fig. 5. Cosmological parameter inference in an LFI setting with simulated weak lensing data. The top row shows the estimated bivariate distribution of ⌦M and
�8 for ABC rejection sampling at different acceptance rates (20%, 50%, and 100%). The middle row shows the estimated posterior densities after applying NNKCDE
to the ABC sample, and the bottom row when applying RFCDE. Both NNKCDE and RFCDE tuned with a CDE loss improve on ABC across acceptance rate levels,
i.e., they provide approximate posteriors that are more concentrated around the true observed parameter values and the degeneracy curve on which the data are
indistinguishable (shown here as a black diamond and dashed line, respectively). We even see some structure at an ABC acceptance rate of 1 (right column); that is,
at an ABC threshold of ✏ ! 1 for which the entire sample is accepted by ABC and passed to our CDE code. HPD values were not included as they fail to distinguish
between conditional and marginal distribution, as mentioned above.

Table 4
Performance of RFCDEfor functional data. We achieve both a lower CDE loss
and computational time for Functional RFCDE(as compared to Vector RFCDE) by
leveraging the functional nature of the data.
Method Train time (in s) CDE loss ± SE
Functional RFCDE 24.89 �3.38 ± 0.155
Vector RFCDE 41.60 �2.52 ± 0.104
Regression RF + KDE 50.63 �3.42 ± 0.120
FlexCode-Spec 4017.93 �3.53 ± 0.136

p(zi|xi) of this example is a Gaussian distribution with mean z
SDSS
i

and variance 0.02.
We compare fRFCDE, a ‘‘Functional’’ adaptation of RFCDE,

with a standard ‘‘Vector’’ implementation of RFCDE, which treats
functional data as a vector. For completeness, we also compare
against standard regression random forest combined with KDE, as
well as FlexCode-Spec, an extension of FlexCode with a Spec-
tral Series regression (Richards et al., 2009; Freeman et al., 2009;
Lee and Izbicki, 2016) for determining the expansion coefficients.
We train on 2000 galaxies and test on the remaining galaxies. The
RFCDE and the fRFCDE trees are both trained with ntrees = 1000,
nbasis = 31, and bandwidths chosen by plug-in estimators. We use
� = 50 for the fRFCDE rate parameter of the Poisson process that
defines the variable groupings.

Table 4 contains the CDE loss and train time for both the
vector-based and functional-based RFCDE models on the SDSS
data, as well as for FlexCode-Spec. We obtain substantial gains
when incorporating functional features both in terms of CDE loss
and computational time. The computational gains are attributed
to requiring fewer searches for each split point as the default
value of mtry =

p
d is reduced. As anticipated, vector-based

RFCDE underperforms with functional data due to the tree splits
on CDE loss struggling to pick up signals in the data and returning
almost the same conditional density regardless of the input. In
contrast, splitting on mean squared error is an easier task and
we include the results of regular regression random forest and

KDE, which are comparable to the results of fRFCDE. Whereas
random forests rely on variable selection (either individual vari-
ables as in vectorial RFCDE or grouped together as in fRFCDE) for
dimensional reduction, FlexCode-Spec is based on the Spectral
Series mechanism for dimension reduction that finds (potentially)
nonlinear, sparse structure in the data distribution (Izbicki and
Lee, 2016). Both types of dimension reduction are reasonable for
spec-z estimation, as particular wavelength locations or regions
in the galaxy SED could carry information of the galaxy’s true
redshift; RFCDE and fRFCDE are effective in finding such loca-
tions by variable selection. Spectral Series on the other hand are
able to recover low-dimensional manifold structure in the entire
data ensemble; as Richards et al. 2009 show, the main direction
of variation in SDSS spectra is directly related to the spectroscopic
redshift.

5. Conclusions

This paper presents statistical tools and software for uncer-
tainty quantification in complex regression and parameter infer-
ence tasks. Given a set of features x with associated response y,
our methods extend the usual point prediction task of classifi-
cation and regression to nonparametric estimation of the entire
(conditional) probability density p(y|x). The described CDE meth-
ods are meant to handle a range of different data settings as
outlined in Table 1. This paper includes examples of code usage
in the contexts of photo-z estimation, likelihood-free inference
for cosmology analysis, and spec-z estimation. In addition, it pro-
vides tools for CDE method assessment and for choosing tuning
parameters of the CDE methods in a principled way.

Our software includes four packages for CDE — NNKCDE,
RFCDE, FlexCode and DeepCDE— each using a different machine
learning algorithm, as well as a package for model assessment,
cdetools. All packages are implemented in both Python and
R, with no dependence on proprietary software, making them
compatible with any operating system supporting either language

12 N. Dalmasso, T. Pospisil, A.B. Lee et al. / Astronomy and Computing 30 (2020) 100362

(e.g., Windows, MacOS, Ubuntu, and any other Unix-based OS).
The code is provided in publicly available Github repositories,
documented using Python and R function documentation stan-
dards, and equipped with Travis CI12 automatic bug-tracking.
Finally, our software makes uncertainty quantification straight-
forward for those used to standard open-source machine learning
Python packages: NNKCDE, RFCDE, FlexCode share the sklearn
API (with fit and predictmethods), which makes our methods
compatible with sklearn wrapper functions (for e.g., cross-
validation and model ensembling). DeepCDE has implementa-
tions for both Tensorflow and Pytorch, two of the most widely
used deep learning frameworks, and can easily be combined with
most existing network architectures.

CRediT authorship contribution statement

N. Dalmasso: Conceptualization, Methodology, Software, Val-
idation, Writing – original draft, Writing – review and editing,
Visualization. T. Pospisil: Conceptualization, Methodology, Soft-
ware, Validation, Writing – original draft. A.B. Lee: Conceptualiza-
tion, Methodology, Writing – original draft, Writing – review and
editing, Project administration, Funding acquisition, Supervision.
R. Izbicki: Conceptualization, Methodology, Software, Writing –
original draft, Writing – review and editing, Supervision. P.E.
Freeman: Writing – original draft. A.I. Malz: Writing – original
draft, Writing – review and editing.

Acknowledgments

We would like to thank the two anonymous reviewers for
their insightful comments that helped improve the manuscript.
ND, TP and ABL were partially supported by the National Sci-
ence Foundation under Grant No. DMS1521786. RI was sup-
ported by Conselho Nacional de Desenvolvimento Científico e
Tecnológico (grant number 306943/2017-4) and Fundação de
Amparo à Pesquisa do Estado de São Paulo (grant numbers
2017/03363-8 and 2019/11321-9). AIM acknowledges support
from the Max Planck Society and the Alexander von Humboldt
Foundation in the framework of the Max Planck-Humboldt Re-
search Award endowed by the Federal Ministry of Education and
Research. During the completion of this work, AIM was advised
by David W. Hogg and supported in part by National Science
Foundation grant AST-1517237.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at doi:10.1016/j.ascom.2019.100362.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G.,
Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D.,
Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F.,
Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.,
2015. TensorFlow: Large-scale machine learning on heterogeneous systems.
Software available from tensorflow.org. http://tensorflow.org/.

Abbott, T.M.C., Alarcon, A., Allam, S., Andersen, P., Andrade-Oliveira, F., An-
nis, J., Asorey, J., Avila, S., Bacon, D., Banik, N., Bassett, B.A., Baxter, E.,
Bechtol, K., Becker, M.R., Bernstein, G.M., Bertin, E., Blazek, J., Bridle, S.L.,
Brooks, D., Brout, D., Burke, D.L., Calcino, J., Camacho, H., Campos, A.,
Carnero Rosell, A., Carollo, D., Carrasco Kind, M., Carretero, J., Castander, F.J.,
Cawthon, R., Challis, P., Chan, K.C., Chang, C., Childress, M., Crocce, M.,
Cunha, C.E., D’Andrea, C.B., da Costa, L.N., Davis, C., Davis, T.M., De Vicente, J.,
DePoy, D.L., DeRose, J., Desai, S., Diehl, H.T., Dietrich, J.P., Dodelson, S.,

12 https://docs.travis-ci.com/.

Doel, P., Drlica-Wagner, A., Eifler, T.F., Elvin-Poole, J., Estrada, J., Evrard, A.E.,
Fernandez, E., Flaugher, B., Foley, R.J., Fosalba, P., Frieman, J., Galbany, L.,
García-Bellido, J., Gatti, M., Gaztanaga, E., Gerdes, D.W., Giannantonio, T.,
Glazebrook, K., Goldstein, D.A., Gruen, D., Gruendl, R.A., Gschwend, J.,
Gutierrez, G., Hartley, W.G., Hinton, S.R., Hollowood, D.L., Honscheid, K.,
Hoormann, J.K., Hoyle, B., Huterer, D., Jain, B., James, D.J., Jarvis, M., Jel-
tema, T., Kasai, E., Kent, S., Kessler, R., Kim, A.G., Kokron, N., Krause, E.,
Kron, R., Kuehn, K., Kuropatkin, N., Lahav, O., Lasker, J., Lemos, P., Lewis, G.F.,
Li, T.S., Lidman, C., Lima, M., Lin, H., Macaulay, E., MacCrann, N., Maia, M.A.G.,
March, M., Marriner, J., Marshall, J.L., Martini, P., McMahon, R.G., Melchior, P.,
Menanteau, F., Miquel, R., Mohr, J.J., Morganson, E., Muir, J., Möller, A.,
Neilsen, E., Nichol, R.C., Nord, B., Ogando, R.L.C., Palmese, A., Pan, Y.C.,
Peiris, H.V., Percival, W.J., Plazas, A.A., Porredon, A., Prat, J., Romer, A.K.,
Roodman, A., Rosenfeld, R., Ross, A.J., Rykoff, E.S., Samuroff, S., Sánchez, C.,
Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Scolnic, D., Secco, L.F.,
Serrano, S., Sevilla-Noarbe, I., Sharp, R., Sheldon, E., Smith, M., Soares-
Santos, M., Sobreira, F., Sommer, N.E., Swann, E., Swanson, M.E.C., Tarle, G.,
Thomas, D., Thomas, R.C., Troxel, M.A., Tucker, B.E., Uddin, S.A., Vielzeuf, P.,
Walker, A.R., Wang, M., Weaverdyck, N., Wechsler, R.H., Weller, J., Yanny, B.,
Zhang, B., Zhang, Y., Zuntz, J., DES Collaboration, 2019. Cosmological con-
straints from multiple probes in the dark energy survey. Phys. Rev. Lett.
122, 171301. doi:10.1103/PhysRevLett.122.171301, URL: https://link.aps.org/
doi/10.1103/PhysRevLett.122.171301.

Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M.,
Banday, A., Barreiro, R., Bartolo, N., Basak, S., et al., 2018. Planck 2018 results.
VI. Cosmological parameters. arXiv preprint arXiv:1807.06209.

Alam, S., Albareti, F.D., Prieto, C.A., Anders, F., Anderson, S.F., Anderton, T.,
Andrews, B.H., Armengaud, E., Aubourg, É., Bailey, S., et al., 2015. The
eleventh and twelfth data releases of the Sloan Digital Sky Survey: final
data from SDSS-III. Astrophys. J. Suppl. Ser. 219 (1), 12.

Alsing, J., Charnock, T., Feeney, S., Wandelt, B., 2019. Fast likelihood-free
cosmology with neural density estimators and active learning. Mon. Not.
R. Astron. Soc. 488 (3), 4440–4458. doi:10.1093/mnras/stz1960.

Alsing, J., Wandelt, B., Feeney, S., 2018. Massive optimal data compression and
density estimation for scalable, likelihood-free inference in cosmology. Mon.
Not. R. Astron. Soc. 477 (3), 2874–2885. doi:10.1093/mnras/sty819.

Ball, N.M., Brunner, R.J., 2010. Data mining and machine learning in as-
tronomy. Internat. J. Modern Phys. D 19 (07), 1049–1106. doi:10.1142/
S0218271810017160.

Beaumont, M.A., Zhang, W., Balding, D.J., 2002. Approximate Bayesian compu-
tation in population genetics. Genetics 162 (4), 2025–2035, https://www.
genetics.org/content/162/4/2025.

Beck, R., Lin, C.-A., Ishida, E., Gieseke, F., de Souza, R., Costa-Duarte, M., Hat-
tab, M., Krone-Martins, A., Collaboration, C., 2017. On the realistic validation
of photometric redshifts. Mon. Not. R. Astron. Soc. 468 (4), 4323–4339.
doi:10.1093/mnras/stx687.

Bishop, C.M., 1994. Mixture Density Networks. Technical Report, Citeseer.
Breiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5–32. doi:10.1023/A:

1010933404324.
Carrasco Kind, M., Brunner, R.J., 2013. TPZ: photometric redshift PDFs and

ancillary information by using prediction trees and random forests. Mon.
Not. R. Astron. Soc. 432 (2), 1483–1501. doi:10.1093/mnras/stt574.

Carrasco Kind, M., Brunner, R.J., 2014. Sparse representation of photometric
redshift probability density functions: preparing for petascale astron-
omy. Mon. Not. R. Astron. Soc. 441 (4), 3550–3561. doi:10.1093/mnras/
stu827, URL: https://academic.oup.com/mnras/article/441/4/3550/1229381/
Sparse-representation-of-photometric-redshift.

Chen, T., Guestrin, C., 2016. XGBoost: A scalable tree boosting system. In:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. ACM, pp. 785–794. doi:10.1145/2939672.
2939785.

Chen, Y., Gutmann, M.U., 2019. Adaptive Gaussian copula ABC. In: Chaudhuri, K.,
Sugiyama, M. (Eds.), Proceedings of Machine Learning Research. In: Pro-
ceedings of Machine Learning Research, vol. 89, PMLR, pp. 1584–1592, URL:
http://proceedings.mlr.press/v89/chen19d.html.

Cunha, C.E., Lima, M., Oyaizu, H., Frieman, J., Lin, H., 2009. Estimating the
redshift distribution of photometric galaxy samples–II. Applications and
tests of a new method. Mon. Not. R. Astron. Soc. 396 (4), 2379–2398.
doi:10.1111/j.1365-2966.2009.14908.x.

Dalmasso, N., Pospisil, T., 2019. tpospisi/DeepCDE 0.1. doi:10.5281/zenodo.
3364862.

Dalmasso, N., Pospisil, T., Izbicki, R., 2019. tpospisi/cdetools 0.0.1. doi:10.5281/
zenodo.3364810.

D’Isanto, A., Polsterer, K., 2018. Photometric redshift estimation via deep
learning-Generalized and pre-classification-less, image based, fully prob-
abilistic redshifts. Astron. Astrophys. 609, A111. doi:10.1051/0004-6361/
201731326.

Epanechnikov, V.A., 1969. Non-parametric estimation of a multivariate prob-
ability density. Theory Probab. Appl. 14 (1), 153–158. doi:10.1137/
1114019.

N. Dalmasso, T. Pospisil, A.B. Lee et al. / Astronomy and Computing 30 (2020) 100362 13

Fischer, P., Dosovitskiy, A., Brox, T., 2015. Image orientation estimation with
convolutional networks. In: GCPR. doi:10.1007/978-3-319-24947-6_30.

Frank, E., Hall, M., 2001. A simple approach to ordinal classification. In:
De Raedt, L., Flach, P. (Eds.), Machine Learning: ECML 2001. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 145–156.

Freeman, P.E., Izbicki, R., Lee, A.B., 2017. A unified framework for constructing,
tuning and assessing photometric redshift density estimates in a selection
bias setting. Mon. Not. R. Astron. Soc. 468 (4), 4556–4565. doi:10.1093/
mnras/stx764.

Freeman, P.E., Newman, J.A., Lee, A.B., Richards, J.W., Schafer, C.M., 2009.
Photometric redshift estimation using Spectral Connectivity Analysis. Mon.
Not. R. Astron. Soc. 398, 2012–2021.

Genest, C., Rivest, L.-P., 2001. On the multivariate probability integral
transformation. Statist. Probab. Lett. 53 (4), 391–399.

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press.
Graff, P., Feroz, F., Hobson, M.P., Lasenby, A., 2014. SKYNET: an efficient and

robust neural network training tool for machine learning in astronomy. Mon.
Not. R. Astron. Soc. 441 (2), 1741–1759. doi:10.1093/mnras/stu642.

Greenberg, D.S., Nonnenmacher, M., Macke, J.H., 2019. Automatic posterior
transformation for likelihood-free inference. In: Proceedings of the 36th
International Conference on Machine Learning. ICML 2019, 9–15 June 2019.
Long Beach, California, USA, pp. 2404–2414, URL: http://proceedings.mlr.
press/v97/greenberg19a.html.

Harrison, D., Sutton, D., Carvalho, P., Hobson, M., 2015. Validation of Bayesian
posterior distributions using a multidimensional Kolmogorov–Smirnov test.
Mon. Not. R. Astron. Soc. 451 (3), 2610–2624.

Hoekstra, H., Jain, B., 2008. Weak gravitational lensing and its cosmological
applications. Ann. Rev. Nucl. Part. Sci. 58, 99–123.

Hyndman, R.J., 1996. Computing and graphing highest density regions. Amer.
Statist. 50 (2), 120–126.

Hyndman, R., Einbeck, J., Wand, M., 2018. hdrcde: Highest density regions
and conditional density estimation. R package version 3.3. https://cran.r-
project.org/web/packages/hdrcde/hdrcde.pdf.

Ivezi¢, ö., Connolly, A.J., VanderPlas, J.T., Gray, A., 2014. Statistics, Data Mining,
and Machine Learning in Astronomy: a Practical Python Guide for the
Analysis of Survey Data, Vol. 1. Princeton University Press.

Ivezi¢, ö., Kahn, S.M., Tyson, J.A., Abel, B., Acosta, E., Allsman, R., Alonso, D.,
AlSayyad, Y., Anderson, S.F., Andrew, J., 2019. LSST: From science drivers to
reference design and anticipated data products. Astrophys. J. 873 (2), 111.
doi:10.3847/1538-4357/ab042c.

Izbicki, R., Lee, A.B., 2016. Nonparametric conditional density estimation in
a high-dimensional regression setting. J. Comput. Graph. Statist. 25 (4),
1297–1316. doi:10.1080/10618600.2015.1094393.

Izbicki, R., Lee, A.B., 2017. Converting high-dimensional regression to high-
dimensional conditional density estimation. Electron. J. Stat. 11 (2),
2800–2831. doi:10.1214/17-EJS1302.

Izbicki, R., Lee, A.B., Freeman, P.E., 2017. Photo-z estimation: An example of
nonparametric conditional density estimation under selection bias. Ann.
Appl. Stat. 11 (2), 698–724. doi:10.1214/16-AOAS1013.

Izbicki, R., Lee, A.B., Pospisil, T., 2019. ABC–CDE: Toward approximate Bayesian
computation with complex high-dimensional data and limited simulations.
J. Comput. Graph. Statist. 1–20. doi:10.1080/10618600.2018.1546594.

Izbicki, R., Lee, A., Schafer, C., 2014. High-dimensional density ratio estima-
tion with extensions to approximate likelihood computation. In: Artificial
Intelligence and Statistics. pp. 420–429.

Izbicki, R., Pospisil, T., 2019. rizbicki/FlexCode v5.9-beta.3. doi:10.5281/zenodo.
3366065.

Joudaki, S., Blake, C., Johnson, A., Amon, A., Asgari, M., Choi, A., Erben, T.,
Glazebrook, K., Harnois-Déraps, J., Heymans, C., Hildebrandt, H., Hoekstra, H.,
Klaes, D., Kuijken, K., Lidman, C., Mead, A., Miller, L., Parkinson, D., Poole, G.B.,
Schneider, P., Viola, M., Wolf, C., 2017. KiDS-450 + 2dFLenS: Cosmological
parameter constraints from weak gravitational lensing tomography and
overlapping redshift-space galaxy clustering. Mon. Not. R. Astron. Soc. 474
(4), 4894–4924. doi:10.1093/mnras/stx2820.

Juric, M., Axelrod, T., Becker, A.C., Becla, J., Bellm, E., Bosch, J.F., Ciardi, D.,
Connolly, A.J., Dubois-Felsmann, G.P., Economou, F., Freemon, M., Gelman, M.,
Graham, M., Ivezi¢, ö., Jenness, T., Kantor, J., Krughoff, K., Lim, K.-T., Lup-
ton, R.H., Mueller, F., Nidever, D., Patterson, M., Petravick, D., Shaw, D.,
Slater, C., Strauss, M., Swinbank, J., Tyson, J.A., Wood-Vasey, M., Wu, X.,
2017. Data Products Definition Document. LSST Corporation, URL: https:
//docushare.lsstcorp.org/docushare/dsweb/Get/LSE-163/.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. CoRR
abs/1412.6980.

Krause, E., Eifler, T., Zuntz, J., Friedrich, O., Troxel, M., Dodelson, S., Blazek, J.,
Secco, L., MacCrann, N., Baxter, E., et al., 2017. Dark energy survey year 1
results: Multi-probe methodology and simulated likelihood analyses. arXiv
preprint arXiv:1706.09359.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. ImageNet classification with deep
convolutional neural networks. In: Proceedings of the 25th International
Conference on Neural Information Processing Systems, Vol. 1. NIPS’12, Curran
Associates Inc., USA, pp. 1097–1105, URL: http://dl.acm.org/citation.cfm?id=
2999134.2999257.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. nature 521 (7553), 436.
doi:10.1038/nature14539.

Lee, A.B., Izbicki, R., 2016. A spectral series approach to high-dimensional
nonparametric regression. Electron. J. Stat. 10 (1), 423–463. doi:10.1214/16-
EJS1112.

Leistedt, B., Hogg, D., 2016. Data-driven, interpretable photometric redshifts
trained on heterogeneous and unrepresentative data. Astrophys. J. 838, doi:
10.3847/1538-4357/aa6332.

Li, J., Nott, D., Fan, Y., Sisson, S., 2017. Extending approximate Bayesian compu-
tation methods to high dimensions via a Gaussian copula model. Comput.
Statist. Data Anal. 106, 77–89. doi:10.1016/j.csda.2016.07.005.

Lueckmann, J.-M., Bassetto, G., Karaletsos, T., Macke, J.H., 2019. Likelihood-
free inference with emulator networks. In: Symposium on Advances in
Approximate Bayesian Inference. pp. 32–53.

Lueckmann, J.-M., Gonçalves, P.J., Bassetto, G., Öcal, K., Nonnenmacher, M.,
Macke, J.H., 2017. Flexible statistical inference for mechanistic models of
neural dynamics. In: Proceedings of the 31st International Conference on
Neural Information Processing Systems. NIPS’17, Curran Associates Inc., USA,
pp. 1289–1299, URL: http://dl.acm.org/citation.cfm?id=3294771.3294894.

Malz, A.I., Marshall, P.J., DeRose, J., Graham, M.L., Schmidt, S.J., Wechsler, R.,
L.D.E.S. Collaboration, 2018. Approximating photo- z PDFs for large surveys.
Astron. J. 156 (1), 35. doi:10.3847/1538-3881/aac6b5.

Mandelbaum, R., 2018. Weak lensing for precision cosmology. Ann. Rev. Astron.
Astrophys. 56 (1), 393–433. doi:10.1146/annurev-astro-081817-051928.

Mandelbaum, R., Seljak, U., Hirata, C.M., Bardelli, S., Bolzonella, M., Bongiorno, A.,
Carollo, M., Contini, T., Cunha, C.E., Garilli, B., 2008. Precision photometric
redshift calibration for galaxy-galaxy weak lensing. Mon. Not. R. Astron. Soc.
386 (2), 781/806. doi:10.1111/1365-2966.2008.12947.

Marin, J.-M., Raynal, L., Pudlo, P., Ribatet, M., Robert, C., 2016. ABC random
forests for Bayesian parameter inference. Bioinformatics 35, doi:10.1093/
bioinformatics/bty867.

Meinshausen, N., 2006. Quantile regression forests. J. Mach. Learn. Res. 7,
983–999, URL: http://dl.acm.org/citation.cfm?id=1248547.1248582.

Munshi, D., Valageas, P., Van Waerbeke, L., Heavens, A., 2008. Cosmology with
weak lensing surveys. Phys. Rep. 462 (3), 67–121.

Nadaraya, E.A., 1964. On estimating regression. Theory Probab. Appl. 9 (1),
141–142.

Ntampaka, M., Avestruz, C., Boada, S., Caldeira, J., Cisewski-Kehe, J., Di Stefano, R.,
Dvorkin, C., Evrard, A.E., Farahi, A., Finkbeiner, D., et al., 2019. The role of
machine learning in the next decade of cosmology. arXiv preprint arXiv:
1902.10159.

Papamakarios, G., Murray, I., 2016. Fast "-free inference of simulation models
with Bayesian conditional density estimation. In: Lee, D.D., Sugiyama, M.,
Luxburg, U.V., Guyon, I., Garnett, R. (Eds.), Advances in Neural Information
Processing Systems 29. Curran Associates, Inc., pp. 1028–1036.

Papamakarios, G., Sterratt, D., Murray, I., 2019. Sequential neural likelihood:
Fast likelihood-free inference with autoregressive flows. In: The 22nd
International Conference on Artificial Intelligence and Statistics. pp. 837–848.

Pasquet, J., Bertin, E., Treyer, M., Arnouts, S., Fouchez, D., 2019. Photometric
redshifts from SDSS images using a convolutional neural network. Astron.
Astrophys. 621, A26. doi:10.1016/j.ascom.2016.03.006.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.,
2019. PyTorch: An imperative style, high-performance deep learning library.
In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E.,
Garnett, R. (Eds.), Advances in Neural Information Processing Systems 32.
Curran Associates, Inc., pp. 8024–8035.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn:
Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830, URL: http:
//dl.acm.org/citation.cfm?id=1953048.2078195.

Pereira, C.A.d.B., Stern, J., 1999. Evidence and credibility: full Bayesian
significance test for precise hypotheses. Entropy 1 (4), 99–110.

Polsterer, K.L., D’Isanto, A., Gieseke, F., 2016. Uncertain photometric redshifts.
arXiv preprint arXiv:1608.08016.

Pospisil, T., Dalmasso, N., 2019a. tpospisi/NNKCDE 0.3. doi:10.5281/zenodo.
3364858.

14 N. Dalmasso, T. Pospisil, A.B. Lee et al. / Astronomy and Computing 30 (2020) 100362

Pospisil, T., Dalmasso, N., 2019b. tpospisi/RFCDE 0.3.2. doi:10.5281/zenodo.
3364856.

Pospisil, T., Dalmasso, N., Inacio, M., 2019. tpospisi/FlexCode 0.1.5. doi:10.5281/
zenodo.3364860.

Pospisil, T., Lee, A.B., 2018. RFCDE: Random forests for conditional density
estimation. arXiv preprint arXiv:1804.05753.

Pospisil, T., Lee, A.B., 2019. (f)RFCDE: Random forests for conditional density
estimation and functional data. arXiv preprint: arXiv:1906.07177.

Ravikumar, P., Lafferty, J., Liu, H., Wasserman, L., 2009. Sparse additive models.
J. R. Stat. Soc. Ser. B Stat. Methodol. 71 (5), 1009–1030. doi:10.1111/j.1467-
9868.2009.00718.x, URL: https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/
j.1467-9868.2009.00718.x.

Richards, J.W., Freeman, P.E., Lee, A.B., Schafer, C.M., 2009. Exploiting
low-dimensional structure in astronomical spectra. Agron. J. 691, 32–42.

Rowe, B., Jarvis, M., Mandelbaum, R., Bernstein, G.M., Bosch, J., Simet, M.,
Meyers, J.E., Kacprzak, T., Nakajima, R., Zuntz, J., et al., 2015. GALSIM:
The modular galaxy image simulation toolkit. Astron. Comput. 10, 121–150.
doi:10.1016/j.ascom.2015.02.002.

Schmidt, S., Malz, A., Soo, J., Almosallam, I., Brescia, M., Cavuoti, S., Cohen-
Tanugi, J., Connolly, A., DeRose, J., Freeman, P., Graham, M., Iyer, K., Jarvis, M.,
Kalmbach, J., Kovacs, E., Lee, A., Longo, G., Morrison, C., LSST Dark Energy
Science Collaboration, 2020. Evaluation of probabilistic photometric redshift
estimation approaches for lsst. arXiv:2001.03621.

Sheldon, E.S., Cunha, C.E., Mandelbaum, R., Brinkmann, J., Weaver, B.A., 2012.
Photometric redshift probability distributions for galaxies in the SDSS DR8.
Astrophys. J. Suppl. Ser. 201 (2), 32. doi:10.1088/0067-0049/201/2/32.

Sisson, S.A., Fan, Y., Beaumont, M., 2018. Handbook of Approximate Bayesian
Computation. Chapman and Hall/CRC, doi:10.1201/9781315117195.

Sohn, K., Lee, H., Yan, X., 2015. Learning structured output representation using
deep conditional generative models. In: Cortes, C., Lawrence, N.D., Lee, D.D.,
Sugiyama, M., Garnett, R. (Eds.), Advances in Neural Information Processing
Systems 28. Curran Associates, Inc., pp. 3483–3491, URL: http://dl.acm.org/
citation.cfm?id=2969442.2969628.

Tang, Y., Salakhutdinov, R.R., 2013. Learning stochastic feedforward neural
networks. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Wein-
berger, K.Q. (Eds.), Advances in Neural Information Processing Systems 26.
Curran Associates, Inc., pp. 530–538, URL: http://dl.acm.org/citation.cfm?id=
2999611.2999671.

Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. J. R. Stat.
Soc. Ser. B Stat. Methodol. 58 (1), 267–288. doi:10.2307/41262671.

van Uitert, E., Joachimi, B., Joudaki, S., Amon, A., Heymans, C., Köhlinger, F.,
Asgari, M., Blake, C., Choi, A., Erben, T., Farrow, D.J., Harnois-Déraps, J.,
Hildebrandt, H., Hoekstra, H., Kitching, T.D., Klaes, D., Kuijken, K., Merten, J.,
Miller, L., Nakajima, R., Schneider, P., Valentijn, E., Viola, M., 2018.
KiDS+GAMA: cosmology constraints from a joint analysis of cosmic shear,
galaxy-galaxy lensing, and angular clustering. Mon. Not. R. Astron. Soc. 476
(4), 4662–4689. doi:10.1093/mnras/sty551.

Vanderplas, J., Connolly, A., Ivezi¢, ö., Gray, A., 2012. Introduction to as-
troml: machine learning for astrophysics. In: Conference on Intelligent Data
Understanding. CIDU, pp. 47–54. doi:10.1109/CIDU.2012.6382200.

Viironen, K., López-Sanjuan, C., Hernández-Monteagudo, C., Chaves-Montero, J.,
Ascaso, B., Bonoli, S., Cristóbal-Hornillos, D., Díaz-García, L.A., Fernández-
Soto, A., Márquez, I., Masegosa, J., Povi¢, M., Varela, J., Cenarro, A.J.,
Aguerri, J.A.L., Alfaro, E., Aparicio-Villegas, T., Benítez, N., Broadhurst, T.,
Cabrera-Caño, J., Castander, F.J., Cepa, J., Cerviño, M., González Delgado, R.M.,
Husillos, C., Infante, L., Martínez, V.J., Moles, M., Molino, A., del Olmo, A.,
Perea, J., Prada, F., Quintana, J.M., 2018. High redshift galaxies in the
ALHAMBRA survey. II. Strengthening the evidence of bright-end excess in
UV luminosity functions at 2.5 z 4.5 by PDF analysis. Astron. Astrophys.
614, A129. doi:10.1051/0004-6361/201731797, arXiv:1712.01028.

Watson, G.S., 1964. Smooth regression analysis. Sankhyā 359–372.
Way, M.J., Scargle, J.D., Ali, K.M., Srivastava, A.N., 2012. Advances in Machine

Learning and Data Mining for Astronomy. Chapman and Hall/CRC.
Wittman, D., 2009. What lies beneath: Using p(z) to reduce systematic photo-

metric redshift errors. Astrophys. J. Lett. 700 (2), L174. doi:10.1088/0004-
637X/700/2/L174.

