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THE EMPIRICAL RULE: 
A Connection between Quantiles, the Mean and the Standard Deviation

For many datasets (the vast majority but not all) there is a simple connection between
approximate percentiles and the mean and SD:

1. The majority of your data (about 2/3) is within 1 SD of the mean.

2. Most of your data (about 95%) is within 2 SD of the mean.

3. Almost none of your data (just a few per 1000) is extreme- more than 3 SDs from the 
mean.
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The Bell Curve

This shape often approximates the shape of histograms of many data sets that 
occur naturally. They are also called Normal Curves.

The closer the histogram for the data is to the Bell-shaped curves, the better the 
empirical rule is as an approximation.
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The Bell Curve

The “Bell-Curve” or “Normal” curve can be scaled and shifted, but its basic 
shape is called the “Standard Normal Curve” and it has a mathematical equation 
that defines it:

The standard Normal curve is centered at 0 and the total area under the curve is 1.0. 
The area between any two points cannot be computed analytically (there is no formula) 
but it can be computed numerically.
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Graph of Standard Normal Curve
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1. Area under the curve between [-1, +1] SD is .682 (68.2% of the total)  (majority)
2. Area between [-2, +2] is .954 (95.4% of total area) (most)
3. Area between [-3, +3] is .997 (99.7% of total area) (almost all)

The Normal curve can be centered at any value: usually denoted with the Greek letter μ.
It can be scaled by any value, denoted with the Greek letter σ.

The Bell Curve
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The empirical rule can be applied to any data point by counting how many standard deviations 
it is from the mean.

For example, the 2001 Seattle Mariners had a winning percentage of 71.6% which is 3.04 
standard deviations above the mean.

This process, which changes the units of the data to a SD scale, is called standardization.

Mathematically, standardization is the transformation of any data point x into “standard units” z 
by subtracting the mean and dividing by the SD’s:

Standard Units and Z-scores

! = # − #̅
&

8



WHARTON MONEYBALL ACADEMY

Case Study: Beane vs. Cashman
Excess Wins/Season After Adjusting for Payroll

Adjusting the Data: a huge idea.

It is crucial to adjust the data so that we can standardize and account for confounding factors to 
find our true answer. So we compute the expected number of wins that a team should have given 
the size of their payroll; the higher the payroll, the more wins a team should have. 

Then, once this is found, we can figure out how a team differed from this number: did they 
have more wins than they should? Less?
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Brian Cashman: 5.4 extra wins/season
Billy Beane: 10.4 extra wins/season

Case Study: Beane vs. Cashman, Excess Wins/Season After Adjusting for Payroll

100% Maximum 10.44

99.5% 10.44

97.5% 9.98

90% 7.21

75% Quartile 4.48

50% Median 0.109

25% Quartile -3.38

10% -7.72

2.5% -11.35

0.5% -11.65

0 Minimum -11.65

Mean = 0.319 
SD = 5.36
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Case Study: Beane vs. Cashman, Excess Wins/Season After Adjusting for Payroll

Adjusting the Data: a huge idea.

Obviously, the Yankees should have the most wins given their payroll, but what if they 
underperformed those expectations? Then their excess wins would be negative-  the team is doing 
worse than it should, given its payroll. 

If it’s positive, then the team is outperforming its payroll.

This histogram reveals the distribution of excess wins; as you can see, the median is almost 0- about 
half the teams outperform expectations and about half underperform.
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Case Study: Beane vs. Cashman, Excess Wins/Season After Adjusting for Payroll

Adjusting the Data: a huge idea.

Now we can more easily compare the A’s and the Yankees, because we can compare how well each team 
actually did to how well each team should have done given the payroll.
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The red curve is the 
expected number of wins 
earned at a given relative 
payroll.
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Standard Units: The Z-scale

Any data point can be converted to “Standard Units” by first subtracting the mean 
and then dividing by the SD.

To show how this works, consider Billy Beane’s 10.5 extra wins (on average, per
season). We are all very impressed, obviously. But how impressive is this, really, in
statistical terms?

Here is where standard units come in:
 Mean = 0.319
 SD = 5.359 excess wins.

Beane’s 10.5 excess wins is 10.5 - 0.319 = 10.2 wins more than average.

Now 10.2/5.359 is 1.9 SD’s above average.
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Z = #" 	− #̅
' = 10.5	 − 0.319

5.359 	= 1.9 Billy Beane

Photo by Silent Sensei from Santa Cruz, USA, CC BY 2.0
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The Normal Curve applied to data

Many datasets follow a “Bell Shaped” curve quite well. For these datasets the empirical rule holds 
precisely. In fact, every quantile can be calculated using only the mean and SD.

Example 1: Consider the 9833 individual seasons pitched by MLB starters (min 150 IP).

Source: Lahman’s Baseball Database

Distribution of ERAs

Mean 3.597
SD 0.8861
N 9833
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The normal curve applied to data – example pitching
So, for example, how rare has it been (in last 5 years) for a starter to have a 2.50 ERA or below?

If 2.50 was 1 SD then only 16% of pitchers would have a lower ERA.
If 2.50 was 2 SD then only 2.5% of pitchers would have a lower ERA.
2.50 is about 1.6 SDs less than the mean. It is closer to 2.5% than 16%.

Distribution of ERAs

Photo by Arturo Pardavila III from Hoboken, NJ, USA, CC BY-SA 2.0

Jake Arrieta, 2014 
2.53 ERA

Mean 3.807
SD 0.8015
N 765
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Normal distribution calculator
Use a calculator: http://stattrek.com/online-calculator/normal.aspx

You can of course use R or a calculator. 

xArrieta, 2014 2.53
Mean 3.807
SD 0.8015
N 765

0.056
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Which pitcher had the best year of all time?

Source: Lahman’s Baseball Database 6
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Which pitcher had the best year of all time?
Adjust the comparison for ERA by subtracting

Source: Lahman’s Baseball Database 7
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Which pitcher had the best year of all time?
Player Year ERA Standardized

ERA (in SU)

Pedro Martinez 2000 1.74 -3.151
Dwight Gooden 1985 1.53 -2.998
Mark Eichorn 1986 1.72 -2.938
Greg Maddux 1994 1.56 -2.929
Greg Maddux 1995 1.63 -2.874
Dolph Leonard 1914 0.96 -2.858
Bob Gibson 1968 1.12 -2.854
Kevin Brown 1996 1.89 -2.822
Roger Clemens 2005 1.87 -2.757
Ron Guidry 1978 1.74 -2.756
Pedro Martinez 1999 2.07 -2.729
Dolf Luque 1923 1.93 -2.696
Walter Johnson 1913 1.14 -2.670
Cart Hubbel 1933 1.66 -2.599
Whitey Ford 1958 2.01 -2.583
Roger Craig 1959 2.06 -2.538
Lefty Grove 1931 2.06 -2.536

Photo "Pedro Martinez warms up" by tingley

Pedro Martinez
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How about WAR as a measure of best season ?
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Year Pitcher Team GWAR Z-score
1966 Sandy Koufax LAN 11.543 4.298

1968 Bob Gibson SLN 11.045 4.032

1985 Dwight Gooden NYN 11.039 4.029

1997 Roger Clemens TOR 10.97 3.993

1972 Steve Carlton PHI 10.712 3.855

1953 Robin Roberts PHI 10.429 3.705

1963 Sandy Koufax LAN 10.405 3.692

1978 Ron Guidry NYA 10.332 3.653

2000 Pedro Martinez BOS 10.294 3.633

1972 Gaylord Perry CLE 9.997 3.474

1964 Dean Chance LAA 9.782 3.360

1971 Wilbur Wood CHA 9.733 3.334

1971 Tom Seaver NYN 9.67 3.300

1971 Vida Blue OAK 9.67 3.300

1965 Sandy Koufax LAN 9.595 3.260-

Why do you think modern pitchers are not 
appearing on this list?   

(reminder:  WAR is ERA, league and park adjusted)


