Lab: Binomial Proportion CI 1. Free Throws We have 2023-2024 feer throw data Raw Data FT = free three made per game FTA = free three attempted per game • Cheate the duturet  $\begin{cases} Row = pluyer \\ FT = total # made free throws \\ FTA = total # attempted free theory \\ \hat{p} = FTP = Seasonal FT percentage \end{cases}$ · Plot: p (x axis) vepus player name (y axis) and overlay the Wald CIS and Agresti CIŚ,

Filter out all players below a certain threshold of free throw attempts. Thoughts? 2. Simulation Study

Discretize the interval [0, 1] into small bins. For each p in 80, midpant, f each bin, 13 and each h in SIO, 100, 1000, 10000} and maybe some others, generate n free throws (n Bernoulli(p) coin flips) {X;}. Compute the Wald CI and Agreiti CI from the Simulated data. For each (n,p) Combo, Repeat this M=100 times. For each (n,p), in what percentage at Simulations does the terre p lie in each CI (i.e., extinate the Coverpaye)? Plot coverage (y axis) versus p (x axis) for each n and interval method,

#### 3. Math HW

• Prove that for 
$$S_h = \sum_{j=1}^{n} X_j \sim Binomial(n, p)$$
  
 $\hat{p} = \overline{X}$  is the MLE (maximum likelihood  
estimate) of P; it maximites the  
phobability of observing the data given that  
parameter,  
 $\widehat{P}_{mLE} := aRgmax P(X_U X_h | p)$   
 $P \in [0,1]$ 

After how many sports bets can You be confident that you're actually good at sports betting? Assume you only bet on -110 game uninner attance.

Hint. Model the Return on a \$1 bet by  $R = \begin{cases} -1 & \text{if lose, wr (1-p)} \\ +\frac{190}{10} & \text{if win, wp p} \end{cases}$ To break even, need  $ER = \frac{190}{10}P - (1-p) = O \implies P = \frac{110}{240}$ .

 Baskerball win probability via Normal approximation: The points suped by a team in a busketball game is the sum of the points scaled in each possession. If you assume this is iid, by CLT the points scaled through a possessions is approximately normal. Deuse a formula top the probability team I beats team 2 assuming each team's surger is interpendent, n possessions Romain in the game, Si, Sz are the points sound of teams I and 2, pe, per are the mean pt sured in a possession by terms ), 2 and by, be are the s.d.'s of posy piz solved. Test it for sensible values for M, Mr, 6, 2, 622, 5, 52, h does it seem reasonable? When/why IT it good and bud?

Read the slides below entitled
 "The Normal Distribution in Sports & Z-Scores"

WHARTON MONEYBALL ACADEMY

# The Normal Distribution in Sports & Z-Scores THE EMPIRICAL RULE:

#### A Connection between Quantiles, the Mean and the Standard Deviation

For many datasets (the vast majority but not all) there is a simple connection between approximate percentiles and the mean and SD:

- 1. The majority of your data (about 2/3) is within 1 SD of the mean.
- 2. Most of your data (about 95%) is within 2 SD of the mean.
- 3. Almost none of your data (just a few per 1000) is extreme- more than 3 SDs from the mean.

The Empirical rule is a descriptive tool; it is a way to describe a data set with just two numbers. It is remarkably useful, as we shall see through examples:

- The first rule describes where the data is mainly- within 1 SD of the mean.
- The second rule describes where the data is mostly, within 2 SDs of the mean.
- The third rule describes where the data is almost always not: more than 3 SDs from the mean.

The empirical rule makes it possible to use two numbers to know what is typical, unusual and exceedingly rare in the data.

# **The Bell Curve**

This shape often approximates the shape of histograms of many data sets that occur naturally. They are also called **Normal Curves**.





Bell Shaped Curve



Liberty Bell in Philadelphia.

The closer the histogram for the data is to the Bell-shaped curves, the better the empirical rule is as an approximation.

# **The Bell Curve**

The "Bell-Curve" or "Normal" curve can be scaled and shifted, but its basic shape is called the "Standard Normal Curve" and it has a mathematical equation that defines it:  $-\gamma^2$ 



The standard Normal curve is centered at 0 and the total area under the curve is 1.0. The area between any two points cannot be computed analytically (there is no formula) but it can be computed numerically.

#### **The Bell Curve**

- 1. Area under the curve between [-1, +1] SD is .682 (68.2% of the total) (majority)
- 2. Area between [-2, +2] is .954 (95.4% of total area) (most)
- 3. Area between [-3, +3] is .997 (99.7% of total area) (almost all)

The Normal curve can be centered at any value: usually denoted with the Greek letter  $\mu$ . It can be scaled by any value, denoted with the Greek letter  $\sigma$ .



#### **Standard Units and Z-scores**

The empirical rule can be applied to any data point by counting how many standard deviations it is from the mean.

For example, the 2001 Seattle Mariners had a winning percentage of 71.6% which is 3.04 standard deviations above the mean.

This process, which changes the units of the data to a SD scale, is called standardization.

Mathematically, standardization is the transformation of any data point x into "standard units" z by subtracting the mean and dividing by the SD's:

$$Z = \frac{x - \bar{x}}{s}$$

#### Case Study: <u>Beane vs. Cashman</u> Excess Wins/Season After Adjusting for Payroll

#### Adjusting the Data: a huge idea.

It is crucial to adjust the data so that we can standardize and account for confounding factors to find our true answer. So we compute the expected number of wins that a team *should* have given the size of their payroll; the higher the payroll, the more wins a team *should* have.

Then, once this is found, we can figure out how a team differed from this number: did they have more wins than they should? Less?

#### Case Study: <u>Beane vs. Cashman</u>, <u>Excess Wins/Season</u> After Adjusting for Payroll

Mean = 0.319SD = 5.36



| 100%  | Maximum  | 10.44  |
|-------|----------|--------|
| 99.5% |          | 10.44  |
| 97.5% |          | 9.98   |
| 90%   |          | 7.21   |
| 75%   | Quartile | 4.48   |
| 50%   | Median   | 0.109  |
| 25%   | Quartile | -3.38  |
| 10%   |          | -7.72  |
| 2.5%  |          | -11.35 |
| 0.5%  |          | -11.65 |
| 0     | Minimum  | -11.65 |

Brian Cashman: 5.4 extra wins/season Billy Beane: 10.4 extra wins/season

# Case Study: <u>Beane vs. Cashman</u>, <u>Excess Wins/Season</u> After Adjusting for Payroll

#### Adjusting the Data: a huge idea.

Obviously, the Yankees *should* have the most wins given their payroll, but what if they underperformed those expectations? Then their excess wins would be negative- the team is doing worse than it should, given its payroll.

If it's positive, then the team is outperforming its payroll.

This histogram reveals the distribution of **excess wins**; as you can see, the median is almost 0- about half the teams outperform expectations and about half underperform.



# Case Study: <u>Beane vs. Cashman</u>, <u>Excess Wins/Season</u> After Adjusting for Payroll Adjusting the Data: a huge idea.

Now we can more easily compare the A's and the Yankees, because we can compare how well each team actually did to how well each team *should* have done given the payroll.



The red curve is the expected number of wins earned at a given relative payroll.

# **Standard Units: The Z-scale**

Any data point can be converted to "Standard Units" by first subtracting the mean and then dividing by the SD.

To show how this works, consider Billy Beane's 10.5 extra wins (on average, per season). We are all very impressed, obviously. But how impressive is this, really, in statistical terms?

Here is where standard units come in:

Mean = 0.319SD = 5.359 excess wins.

Beane's 10.5 excess wins is 10.5 - 0.319 = 10.2 wins more than average.

Now 10.2/5.359 is 1.9 SD's above average.

$$Z = \left(\frac{x_i - \bar{x}}{s}\right) = \left(\frac{10.5 - 0.319}{5.359}\right) = 1.9$$



Billy Beane

#### Photo by Silent Sensei from Santa Cruz, USA, CC BY 2.0

# The Normal Curve applied to data

#### Case study 2:

Many datasets follow a "Bell Shaped" curve quite well. For these datasets the empirical rule holds precisely. In fact, every quantile can be calculated using only the mean and SD.

#### 765 seasons for starting pitchers since 2010.





# The normal curve applied to data – example pitching

So, for example, how rare has it been (in last 5 years) for a starter to have a 2.50 ERA or below?

If 2.50 was 1 SD then only 16% of pitchers would have a lower ERA. If 2.50 was 2 SD then only 2.5% of pitchers would have a lower ERA. 2.50 is about 1.6 SDs less than the mean. It is closer to 2.5% than 16%.



# Normal distribution calculator

Use a calculator: http://stattrek.com/online-calculator/normal.aspx



| X <sub>Arrieta, 2014</sub> | 2.53   |  |  |
|----------------------------|--------|--|--|
| Mean                       | 3.807  |  |  |
| SD                         | 0.8015 |  |  |
| N                          | 765    |  |  |

You can of course use  $\mathbb{R}$  or a calculator.  $\rightarrow pnorm(x, mean, sd)$ 

# Which pitcher had the best year of all time?

![](_page_17_Figure_2.jpeg)

# Which pitcher had the best year of all time?

#### Adjust the comparison for ERA by subtracting

![](_page_18_Figure_3.jpeg)

# Which pitcher had the best year of all time?

| Player         | Year | ERA  | Standardized<br>ERA (in SU) |
|----------------|------|------|-----------------------------|
| Pedro Martinez | 2000 | 1.74 | -3.151                      |
| Dwight Gooden  | 1985 | 1.53 | -2.998                      |
| Mark Eichorn   | 1986 | 1.72 | -2.938                      |
| Greg Maddux    | 1994 | 1.56 | -2.929                      |
| Greg Maddux    | 1995 | 1.63 | -2.874                      |
| Dolph Leonard  | 1914 | 0.96 | -2.858                      |
| Bob Gibson     | 1968 | 1.12 | -2.854                      |
| Kevin Brown    | 1996 | 1.89 | -2.822                      |
| Roger Clemens  | 2005 | 1.87 | -2.757                      |
| Ron Guidry     | 1978 | 1.74 | -2.756                      |
| Pedro Martinez | 1999 | 2.07 | -2.729                      |
| Dolf Luque     | 1923 | 1.93 | -2.696                      |
| Walter Johnson | 1913 | 1.14 | -2.670                      |
| Cart Hubbel    | 1933 | 1.66 | -2.599                      |
| Whitey Ford    | 1958 | 2.01 | -2.583                      |
| Roger Craig    | 1959 | 2.06 | -2.538                      |
| Lefty Grove    | 1931 | 2.06 | -2.536                      |

![](_page_19_Picture_3.jpeg)

Pedro Martinez

#### How about WAR as a measure of best season?

| Year | Pitcher        | Team | GWAR   | Z-score |
|------|----------------|------|--------|---------|
| 1966 | Sandy Koufax   | LAN  | 11.543 | 4.298   |
| 1968 | Bob Gibson     | SLN  | 11.045 | 4.032   |
| 1985 | Dwight Gooden  | NYN  | 11.039 | 4.029   |
| 1997 | Roger Clemens  | TOR  | 10.97  | 3.993   |
| 1972 | Steve Carlton  | PHI  | 10.712 | 3.855   |
| 1953 | Robin Roberts  | PHI  | 10.429 | 3.705   |
| 1963 | Sandy Koufax   | LAN  | 10.405 | 3.692   |
| 1978 | Ron Guidry     | NYA  | 10.332 | 3.653   |
| 2000 | Pedro Martinez | BOS  | 10.294 | 3.633   |
| 1972 | Gaylord Perry  | CLE  | 9.997  | 3.474   |
| 1964 | Dean Chance    | LAA  | 9.782  | 3.360   |
| 1971 | Wilbur Wood    | СНА  | 9.733  | 3.334   |
| 1971 | Tom Seaver     | NYN  | 9.67   | 3.300   |
| 1971 | Vida Blue      | OAK  | 9.67   | 3.300   |
| 1965 | Sandy Koufax   | LAN  | 9.595  | 3.260-  |

![](_page_20_Picture_3.jpeg)

Why do you think modern pitchers are not appearing on this list?

(reminder: WAR is , league and park adjusted)