










3.2 Problems with existing win probability models

Football analysts see a dataset of 511,264 plays from 2006 to 2021 and think this is enough data
to fit accurate WP models. This, however, is not true because football data is highly autocorre-
lated: every game has only one winner. Formally, the binary response variable yi of the ith play
indicates whether the team with possession won the game.12 Crucially, the reponse values are not
independent, as all plays from the same game share the same draw of the response column. On
this view, the effective sample size is much closer to 4,101, the number of non-tied games from
2006 to 2021. This is nowhere near enough data to experience the full variability of the nonlinear
and interacting variables of score differential, time remaining, point spread, yardline, yards to go,
timeouts, etc. In fitting win probability models, we are in a limited-data context, and as such we
expect wide confidence intervals and some bias in win probability point estimates.

3.3 Simulation study

To better understand how autocorrelation affects estimating win probability from observational
data, we conduct a simulation study. Specifically, we create a simplified version of football in
which the true win probability at each game-state is known. Then, we see how well existing meth-
ods recover the true win probability. In particular, we measure the average error between true and
estimated WP, and we compare the coverage and lengths of various bootstrapped WP confidence
intervals. In our simulations, we find that XGBoost fit from autocorrelated observational data re-
covers the general trend of WP, with a mean absolute error of less than 2% WP. The standard
bootstrap, which ignores the autocorrelated nature of the dataset, yields confidence intervals which
are too narrow, resulting in subpar coverage. On the other hand, the randomized cluster bootstrap,
which accounts for autocorrelation, obtains approximately 90% frequentist coverage of the true
win probability via subtantially wide confidence intervals with an average width of 8% WP. Our
primary takeaway is that win probability models fit from an autocorrelated historical dataset of
4,101 games are subject to substantial uncertainty.

Rules of the game. Our game, a simplified form of football, begins at midfield. Each play, the ball
moves left or right by one yardline with equal probability. If the ball reaches the left (right) end
of the field, team one (two) scores a touchdown, worth one point. The ball resets to midfield after
each touchdown. After N plays, the game ends. If the game is still tied after N plays, a fair coin is
flipped to determine the winner. We discuss the formal mathematical specification of the game in

12The response variable for fitting EP models from observational data is also autocorrelated, as plays are clustered
into epochs (plays which share the same next score outcome). Nevertheless, our dataset of football plays from 2006
to 2021 contains 47,874 epochs, and each epoch contains an average of about 11 plays. We use the same methods
developed later in this section (e.g., the randomized cluster bootstrap) to quantify uncertainty in EP estimates, and we
find that autocorrelation impacts EP models to a significantly smaller degree than it affects WP models.
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Appendix S2.1. Additionally, we explicitly compute true win probability as a function of timestep,
field position, and score differential using dynamic programming (see Appendix S2.1 for details).

Simulation methodology. 25 times, we simulate G games, each with N plays per game. We use
L = 4 yardlines so that the average number of plays between each score is similar to that of a real
football game. This yields 25 simulated datasets of simplified football plays, each of the form

D= {(n,Xgn,Sgn,ygn) : n = 1, ...,N and g = 1, ...,G}. (3.4)

For each play of game g, we record the timestep n, the field position Xgn, the score differential Sgn,
and a binary variable ygn indicating whether the team with possession wins the game. The response
variable y is autocorrelated, as each play within the same game shares the same random draw of y.

On each simulated dataset, we use machine learning to estimate win probability as a function of
timestep n, field position x, and score differential s,

dWP(n,x,s) = XGBoost(D)(y|n,x,s). (3.5)

We then compute the mean absolute error between the true and estimated win probabilities aver-
aged over the 25 simulations. We also compare the coverage and lengths of the WP confidence
intervals produced by various bootstraps, discussed below, averaged over the 25 simulations.

Bootstrap methodology. We compare the coverage and lengths of the WP confidence intervals
produced by the standard bootstrap, cluster bootstrap, and randomized cluster bootstrap, averaged
over the 25 simulations. In the standard bootstrap, which assumes each row (play) of the dataset
is independently drawn., each of B bootstrapped datasets are formed by resampling N plays with
replacement. In the cluster bootstrap, each of B bootstrapped datasets are formed by resampling
G0 games with replacement, keeping each observed row within each resampled game. Finally, in
the randomized cluster bootstrap, each of B bootstrapped datasets are formed by resampling G0

games with replacement, and within each game resampling plays with replacement. To acheive
better coverage, we resample half as many games as in the original dataset, G0 = G/2. Then,
for each bootstrap method, we fit a WP model WPb to each bootstrapped dataset b. The confi-
dence interval for the WP estimate at game-state x is defined by the 2.5th and 97.5th quantiles of
{WP1(x), ...,WPB(x)}.

Simulation results. We report the results of our simulation study in Table 3. The first row reports
results for which our simulated datasets consist of G = 4101 games and N = 53 plays per game,
which matches the number of games and the average number of first down plays in our dataset of
real football plays. Each game in these datasets consists of K = 53 autocorrelated plays per game.
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The second row reports results for which our simulated datasets consist of G = 4101 · 53 games
and N = 53 plays per game, but we keep just K = 1 play per game. In other words, those datasets
consist of 217353 plays with an i.i.d. response column.

G N K
MAE bt

WP and dWP

CI
covg.
SB

CI
covg.
CB

CI
covg.
RCB

CI
length

SB

CI
length

CB

CI
length
RCB

4101 53 53 0.0179 0.73 0.85 0.90 0.048 0.067 0.079

4101 ·53 53 1 0.0164 0.78 0.78 0.78 0.049 0.049 0.049

Table 3: Simulation study results. SB means standard bootstrap, CB means cluster bootstrap, and
RCB means randomized cluster bootstrap.

In the simulation study with autocorrelation (K = 53), the mean absolute error (MAE) between the
true WP and the WP estimated by XGBoost is less than 2% over average.13 So, XGBoost recovers
the general trend of the true WP. In the simulation study without autocorrelation (K = 1), the
MAE is similar but slightly smaller. This suggests that most of the bias induced by fitting WP from
observational data is the result of having limited data, not from the autocorrelation.

The length and coverage of win probability confidence intervals, on the other hand, are significantly
impacted by autocorrelation. In the simulation study with autocorrelation (K = 53), the standard
bootstrap, which ignores autocorrelation, produces confidence intervals which are too narrow at an
average width of about 5% WP, leading to a subpar 73% coverage. The cluster bootstrap produces
wider confidence intervals at an average width of about 7% WP, leading to a higher 85% coverage.
The randomized cluster bootstrap produces even wider confidence intervals at an average width of
about 8% WP, leading to a satisfactory frequentist coverage of 90% over average. Additionally,
coverage from the randomized cluster bootstrap is similar across all values of true win probability
except near 0 and 1.14 To increase coverage at the extremes, we widen our confidence intervals
when dWP< 0.025 to have a lower bound of 0 and when dWP> 0.975 to have an upper bound of 1.
Also, average confidence interval length from the randomized cluster bootstrap is at most 12% for
some values of true WP, and C.I. length decreases as true WP moves towards the extremes.15

In the simulation study without autocorrelation (K = 1), on the other hand, each bootstrap method
is identical and yields an average confidence interval length of about 5% WP (similar to the average
C.I. length from the standard bootstrap on autocorrelated data). The average frequentist coverage
is 78%; to increase coverage we could widen the confidence intervals by resampling fewer than

13The MAE is smaller than about 3.5% WP across all values of true win probability. See Figure S16a of Ap-
pendix S2.1 for details.

14See Figure S16b of Appendix S2.1 for details.
15See Figure S16c of Appendix S2.1 for details.
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S2 Win probability details

S2.1 Simulation study details

Generating plays. Formally, the outcome of the nth play of the gth game is

xgn
iid⇠ ±1. (S1)

The game starts at midfield, Xg0 = L/2, and the game begins tied, Sg0 = 0. The field position at the
start of play n is

Xg,n+1 :=

8
<

:
Xgn +xgn if 0 < Xgn +xgn < L (not a TD)

L/2 else,
(S2)

and the score differential at the start of play n is

Sg,n+1 :=

8
>>><

>>>:

Sgn +1 if Xgn +xgn = 0 (TD)

Sgn �1 if Xgn +xgn = L (opp. TD)

Sgn else.

(S3)

The response column win is

ygn ⌘ yg,N+1 :=

8
>>><

>>>:

1 if Sg,N+1 > 0

0 if Sg,N+1 < 0

Bernoulli(1/2) else (overtime).

(S4)

As in our dataset of real football plays, this response column is highly autocorrelated – plays from
the same game share the same draw of the winner of the game.

Generating observational data. We create a dataset of plays from G games. Each game consists
of N plays, and the field consists of L yardlines. The results from each game yield a simulated
dataset

D= {(n,Xgn,Sgn,ygn) : n = 1, ...,N and g = 1, ...,G}. (S5)

True win probability. The true win probability

WP(n,x,s) := P(Sg,N+1 > 0|Xgn = x,Sgn = s) (S6)
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of our simplified version of football is computed explicitly using dynamic programming,

WP(N +1,x,s) =

8
>>><

>>>:

1 if s > 0

1/2 if s = 0

0 if s < 0,

(S7)

and

WP(n�1,x,s) =

8
>>><

>>>:

1
2WP(n, L

2 ,s+1)+ 1
2WP(n,x+1,s) if x = 1

1
2WP(n,x�1,s)+ 1

2WP(n, L
2 ,s�1) if x = L�1

1
2WP(n,x�1,s)+ 1

2WP(n,x+1,s) else.

(S8)

Visualizing the simulation study results. In Figure S16 we visualize the MAE of WP estimates
and the confidence interval lengths and coverages, averaged over all of the simulations. In Fig-
ure S17 we visualize the WP point estimates and bootstrap confidence intervals for one simulation.

S2.2 WP model Selection

In this Section, we compare the out-of-sample predictive performance of various WP models. Our
full dataset consists of all football plays from 2006 to 2021. The dataset is clustered into games,
as plays from each game share the same winning team. To keep the clustered nature of our dataset
intact and to avoid data bleed, we split our dataset in half by randomly sampling 50% of all games.
The first down plays from the first 50% of these games form the hold-out test set. We test on first
down plays because, as discussed in Appendix S3.1, fourth down decision making relies on the
value of having a first down. The plays from the other 50% of these games form the training set.
To tune XGBoost models, we split the training set in half by randomly sampling 50% of the games
from the training set. The plays from the first 50% of these games form the XGBoost training
set, and the remaining plays form the validation set for hyperparameter tuning. We then tune our
XGBoost models in a similar fashion as Baldwin (2021a).

We visualize the results of our model comparison in Table S6. We discussed Yurko et al. and
Baldwin’s models in Section 3.1. We give detailed descriptions of the best GAM (Yurko+) and
XGBoost (Baldwin+) models in Appendix S2.3.

An improved GAM outperforms Baldwin’s XGBoost because the latter overfits. An improved
XGBoost model outperforms an improved GAM because win probability is a highly nonlinear func-
tion of the interacting fundamental variables of score differential and time remaining. The best cat-
alytic machine learning model only slightly edges out the best XGBoost model because XGBoost

classification for win probability takes advantage of monotone constraints (e.g., because win prob-
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(a)

(b)

(c)

Figure S16: As a function of true WP, MAE of true and estimated WP (Figure (a)), coverage of true
WP by randomized cluster bootstrap (Figure (b)), and confidence interval length of randomized
cluster bootstrap (Figure (c)).
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