Example of the Research PRocess: Rethinking WAR for Starting Pitchers

Suppose I want to start a sports analytics Research Project.
But, I don't have any ideas Right now. A fantastic way to get started is to simply read about something you'Re interested about. Perhaps you were listening to a podcast on whin someone mentioned that Roger clemens hal the most cancer Wins Above Repluement (WAR) of all time, 133.7, according to Fam Graphs.
You may have also heard that Pedro Martinez in 1999 has the highest single season WAR of all time, 11.6 , according to Fan Creaphs. You may think that WAR is a Really coll concept, and it makes some intuisie sense
over why it seems like a nice nay to evaluate pitchers, and more generally, all players.

Wins Above Replacement - Replace a player with a replacment-level player (e.g, the best guy you could get on waiver), how many fewer wins would the than have, assuming average teammer and opponents?

Implementation take a players observed performance, ignoing/adjutiy for things that he is not responsible for, and map that to wins

Say you don't know the math behind WAR, although you are curious to learn. So, you Read.

The most widely used/auented public war implementations are from Fanfraphs and Baseball Reference.

FanGruphs WAR for pitchers:
https://library.fangraphs.com/war/calculating-war-pitchers/
Baseball Reference WAR for pitchers:
https://www.baseball-reference.com/about/war_explained_pitch.shtml

When you read about WAR for pithers, a few things catch youk eye: * WAR involves mapping a pitcher's performance

$$
\left(\begin{array}{llll}
\text { eg., } & \text { FIP } & \text { for Fancraphs } \\
& \times R A & \text { for Baphall } & \text { Reference }
\end{array}\right)
$$

to Wins

$$
\text { if } F I P=\frac{13 \cdot H R+3 \cdot(B B+H P B)-2 \cdot(K+I F A B)}{I P}+C
$$

Fielding Independent Pitching (with Infield Flies!)
The first thing you need to do to calculate a pitcher's WAR is to calculate their FIP. Unfortunately for those of you playing along at home, you can't simply take the pitcher's FIP from their player page because we treat infield fly balls (IFFB) as strikeouts for the purposes of WAR but not for the general FIP calculation found on the player's page. We'll call this ifFIP to avoid confusion. Here is the formula:

$$
\text { ifFIP }=\left(\left(13^{*} H R\right)+\left(3^{*}(B B+H B P)\right)-\left(2^{*}(K+I F F B)\right)\right) / I P+i f F I P \text { constant }
$$

This is the traditional FIP formula, but with IFFB added in as strikeouts. However, keep in mind that you also need to calculate a special ifFIP constant and can't just grab "cFIP" from our guts page.

$$
i f F I P \text { Constant }=\lg E R A-\left(\left(\left(13^{*} \lg H R\right)+\left(3^{*}(\lg B B+\lg H B P)\right)-\left(2^{*}(\lg K+\lg I F F B)\right)\right) / \lg I P\right)
$$

$\times R A=$ expected puns allowed
$=i$ ignoring the ordering eng. $1 B$, out, out, $B B, H R$, out
vi, $H R, I B$, IB, at, art, out and jut ring the events I $H R, 2, B, 3$ out, What it the expected pursy allowed of the imine?

* there are a series of convoluted adjustments on top of the base performance metric
$\left(\begin{array}{ll}\text { e.g., } & \text { league adjustment } \\ & \text { team defense adjustment }\end{array}\right)$
* WAR inulues mapping a pitcher's performance averaged over the entire season into wins
iffIP: divides by IP
$x R A$: cumulative seasonal $\times R A$
Thoughts: averaging pitcher performance
over the course of a season
seems weird
Let's explore some implications of this modeling assumption.

Ex | game | 1 | 2 | 3 | 4 | 5 | 6 | total |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| earned runs | 0 | 10 | 1 | 2 | 1 | 1 | 15 |
| innings pitched | 9 | 4 | 6 | 7 | 8 | 7 | 41 |

Table 1: Max Scherzer's performance over six games prior to the 2014 All Star break.
4 dominant performances $\rightarrow \geq 4$ wins

$$
\begin{aligned}
& \frac{15 \text { Runs }}{41 \text { IP }} \times 9 \frac{\text { innius }}{\text { game }}=\frac{3.66 \text { Rms }}{\text { Complete game }} \\
& 3.66 \frac{\text { Rus }}{\text { Complex game }} \approx 0.55 \underset{\text { Win probability }}{\text { complete yare }} \\
& \longrightarrow \approx 3.30 \text { wins } \\
& \text { OveR } 6 \text { games }
\end{aligned}
$$

Big difference $b / t \geqslant 4$ and 3.3 wins!

Ex Would you rather have pitcher A or pitiner B ?
A: 5 Runs in each game
B: Altemates blt 10 and 0 Runs in exch complete game
All else the same, existing wAR methodologies value these 2 pitches the expect same.

Would Rather have pitcher B though...
Ex Pitcher A: attemates between allowing 7 and 0 Duns pee complete game
Pitcher B_{0} altenots between allowing 14 and 0 Runs per copalite game
Existing WAR:

$$
\begin{aligned}
& A \sim 3.5 \text { nur/game } \\
& B \sim 7 \text { nu/game } \\
& A \gg
\end{aligned}
$$

"Real" WAR: Both A and B win halt of their games.

$$
A \approx B^{\prime}
$$

"You cam only lose a game once"
"Not all Runs have the same value"
\rightarrow the " 8th Run allowed in a game is "worth" less than the 1 st
\rightarrow the marginal difference in win probability between allowing the $7^{\text {th }} 9,8^{\text {th }}$ Run is less than the marginal difference in game WAR between alloy
the $1^{\beta t}$ and $2^{\text {nd }}$ Run, sine pounce essentially already lost the game
\rightarrow if $R \mapsto W A R(R)$ is game WAR as a function of Runs allowed, then $\operatorname{WAR}(R)-\operatorname{WAR}(R-1)$ gets smaller as R get bigger
$\rightarrow R H \operatorname{WAR}(R)$ should be convex

PRoblem: Averaging pitcher perfoemame over the course of the season is cleanly wrong

- it ignores the game-by -game varimue in Dither perforemmie
- RHWAR(R) should be convex (ii, not all Runs should have the same value)
- a win is the frumunental nosy of a game,

Goal: Fix this problem.
Make one incremental improvement [Research].
\rightarrow calculate historical WAR in exch individual game seasonal WAR is the sum of game WAR.

Task Game WAR for starring pitchers
How to do this?
English \rightarrow Math
(TM)

One step at a time Begin with Wins W

Wins How many wins did Scherzer contribute in this game?
Math: win Probability
Pitcher valuation: We only want to judge scherzer using things he's Responsible for

Conformers, egg.
variables that affect his performance:
PaRk
opposing team's butting quality
his team's fielding quality
contextual

$$
\frac{\qquad}{\text { probables that affect the win probability }}
$$

variables that dort affect ho perfferwne and so we should n't judge him with: his team's batters/oppoing teen's defense

Start Simple
Begin with the easiest version of the task. Then, iterate on top of that.

* Begin just with Scherzer's observed performance. Adjust fir carfounders later.
Task given Scherzer's performconce, $\left\{\begin{array}{l}\text { Runs Allowed } R \\ \text { exit inning } I \\ \text { exit }\end{array}\right.$ when he exits the game?
conext-nectral: assume league-curnyse offences, defaces, ignore his own team's Runs scored
Start simple: assume he finishes the inning, so ignore $(S, 0)$
Model

$$
\begin{aligned}
& \text { the function } \\
& f=f(I, R)=
\end{aligned}
$$

assuming both teams have league-average offenses, compute the probability a team wins a game after giving up R runs through I complete innings
Since $f(I, R)$ can be vizualized as a $2 D$ grid, we name our WAR Grid WAR.
This is the simplest version of the question, and it is nontrivial.

Takeaway: 2 great ways to do Research in applied statistics (esp sports)
(1.) "Read First": Read a paper/article/bloypost about spoon statistics.
Replicate it.
Check what else las been done and Replicate the state of the ant.
Find one thing you don't like
Make one incremental) implearemant.
$\rightarrow e . g$. Grid WAR
(2. "Think First": Think of a cool idea, Read relevant literature and replicate state of the art, if any. Solve the problem.
\rightarrow e.g. My NCAA brackets paper

