
STATS 200: Introduction to Statistical Inference Autumn 2016

Lecture 24 — The Bradley-Terry model

In the remaining lectures, we will explore how the methods of statistical inference that

we developed for the setting of n IID observations X1, . . . , Xn
IID∼ f(x|θ) may be applied to

other types of data and statistical models. Each of the next five lectures will introduce a
statistical model using a different motivating example, and then use our tools from Unit 2
to solve several inference questions in this example.

A parametric model for a data vector Y (not necessarily consisting of IID coordinates)
is a specification of the joint distribution of Y in terms of a small number of parameters θ.
The likelihood lik(θ) = f(Y|θ) is the joint PMF or PDF of Y viewed as a function of θ. The
log-likelihood is l(θ) = log lik(θ), and the MLE θ̂ is the value of θ that maximizes lik(θ).

To extend the theory of maximum likelihood and Fisher information to the non-IID

setting, note that for IID data X1, . . . , Xn
IID∼ f(x|θ), we may introduce the notation

IX(θ) := nI(θ) =
n∑
i=1

−Eθ
[
∂2

∂θ2
log f(Xi|θ)

]
= −Eθ[l′′(θ)],

which represents the total Fisher information of all n observations X = (X1, . . . , Xn).
Our main theorem regarding the MLE θ̂ states that it is approximately distributed as
N (θ0,

1
n
I(θ0)

−1) = N (θ0, IX(θ0)
−1) for large n if the parametric model is correct and the

true parameter is θ0. For non-IID data and the general log-likelihood l(θ) = log f(Y|θ), let
us define

IY(θ) = −Eθ[l′′(θ)]
in the single-parameter case θ ∈ R and

IY(θ) = −Eθ[∇2l(θ)]

in the multi-parameter case θ ∈ Rk, where

∇2l(θ) =

(
∂2

∂θi∂θj
l(θ)

)
1≤i,j≤k

is the second-derivative (Hessian) matrix for l(θ). In all of the non-IID settings we will
consider, under appropriate asymptotic conditions, the approximate sampling distribution
of θ̂ is still given by the (multivariate) normal distribution N (θ0, IY(θ0)

−1) when the total
sample size is large. We will appeal to this approximation without proof in our examples.

24.1 The Bradley-Terry model

Example 24.1. There are 30 basketball teams in the NBA, each playing 82 games in the
regular season (so there are 1230 total games). We observe, at the end of the regular season,
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which two teams (i, j) played in each game, and whether team i or team j won. How can
we rank the teams and/or determine the strength of each team?

The simplest strategy might be to compare the number of games won by each team.
However, the NBA season is structured so that every team plays every other team a different
number of times (between 2 and 4). So the teams have different “strengths of schedule”,
meaning that some teams play stronger opponents more frequently than do other teams.
These teams might have worse win-loss records, but in fact be better than other teams that
won more games against weaker opponents.

A model-based approach to address this problem is the following: Let βi ∈ R represent
the “strength” of team i, and let the outcome of a game between teams (i, j) be determined
by βi − βj. The Bradley-Terry model treats this outcome as an independent Bernoulli
random variable with distribution Bernoulli(pij), where the log-odds corresponding to the
probability pij that team i beats team j is modeled as

log
pij

1− pij
= βi − βj.

Equivalently, solving for pij yields

pij =
eβi−βj

1 + eβi−βj
=

eβi

eβi + eβj
.

This model is over-parametrized in the sense that it is exactly the same if we add a fixed
constant c to all values βi, because the differences βi − βj remain unchanged. We may fix
this problem by setting βi ≡ 0 for a particular team, for example βWarriors ≡ 0. Then for
every other team j, βj = βj − 0 represents the log-odds that team j beats the Warriors.

If we always order each pair (i, j) so that team i is the home team and j is the away
team, then we may incorporate a home-court advantage by including an intercept term α:

log
pij

1− pij
= α + βi − βj,

or equivalently

pij =
eα+βi−βj

1 + eα+βi−βj
. (24.1)

This increases the log-odds of the home team winning in every game by a constant value α.

More generally, the Bradley-Terry model assigns scores to a fixed set of items based on
pairwise comparisons of these items, where the log-odds of item i “beating” item j is given by
the difference of their scores. An intercept term may be included to account for a systematic
difference between the first and second item of each comparison.

24.2 Statistical inference

Let k = 30 be the number of NBA teams, and denote the Warriors as team 1. We might be
interested in the following inferential tasks:
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• Estimate the home-court advantage α and the team strengths β1, . . . , βk (constraining,
say, β1 = βWarriors ≡ 0)

• Test the null hypothesis of no home-court effect, α = 0

• Obtain a confidence interval for βi − βj for two particular teams (i, j)

Suppose we observe n total games (i1, j1), . . . , (in, jn) between these k teams, where
each (i, j) is a pair of distinct teams in {1, . . . , k} and the home team is team i. Let
Y1, . . . , Yn ∈ {0, 1} be such that Ym = 1 if im beat jm in the mth game and Ym = 0
otherwise. The likelihood for the parameters θ = (α, β2, . . . , βk) is then given by

lik(α, β2, . . . , βk) =
n∏

m=1

pYmimjm(1− pimjm)1−Ym =
n∏

m=1

(1− pimjm)

(
pimjm

1− pimjm

)Ym
,

where pij is given as a function of α, βi, and βj by equation (24.1) and we set β1 ≡ 0. The
log-likelihood is

l(α, β2, . . . , βk) =
n∑

m=1

Ym log

(
pimjm

1− pimjm

)
+ log(1− pimjm)

=
n∑

m=1

Ym(α + βim − βjm)− log(1 + eα+βim−βjm ). (24.2)

To estimate the parameters θ = (α, β2, . . . , βk) using the MLE, we set the partial deriva-
tive with respect to each parameter α, β2, . . . , βk equal to 0:

0 =
∂l

∂α
=

n∑
m=1

Ym −
eα+βim−βjm

1 + eα+βim−βjm
(24.3)

0 =
∂l

∂βi
=
∑

m:im=i

(
Ym −

eα+βim−βjm

1 + eα+βim−βjm

)
+
∑

m:jm=i

(
−Ym +

eα+βim−βjm

1 + eα+βim−βjm

)
. (24.4)

This yields a system of k equations in the k unknowns α, β2, . . . , βk, which may be solved nu-
merically using the Newton-Raphson algorithm. The solution is the MLE θ̂ = (α̂, β̂2, . . . , β̂k).

To test the null hypothesis H0 : α = 0, we may use the generalized likelihood ratio test
(GLRT): Under the sub-model where α = 0, the log-likelihood function is

l(β2, . . . , βk) =
n∑

m=1

Ym(βim − βjm)− log(1 + eβim−βjm ),

and the system of score equations satisfied by the sub-model MLE is

0 =
∂l

∂βi
=
∑

m:im=i

(
Ym −

eβim−βjm

1 + eβim−βjm

)
+
∑

m:jm=i

(
−Ym +

eβim−βjm

1 + eβim−βjm

)
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for i = 2, . . . , k. We may solve these equations using Newton-Raphson to obtain the sub-
model MLEs β̂2,0, . . . , β̂k,0. The GLRT of α = 0 is based on the test statistic

−2 log Λ = −2 log
lik(0, β̂2,0, . . . , β̂k,0)

lik(α̂, β̂2, . . . , β̂k)
,

and an approximate level-0.05 test rejects H0 when −2 log Λ > χ2
1(0.05). (The number of

degrees of freedom is 1 because the full model has one more parameter, α, than the sub-
model.)

We may obtain a confidence interval for βi − βj by centering it around β̂i − β̂j, and

estimating the standard error of β̂i − β̂j. Let us first consider the sampling distribution of

the entire vector of MLE estimates θ̂ = (α̂, β̂2, . . . , β̂k). When the number of total games n is
large, this is approximately N (θ, IY(θ)−1), where IY(θ) = −Eθ[∇2l(θ)]. The Hessian matrix
∇2l(θ) may be computed by differentiating the right sides of the score equations (24.3) and
(24.4) a second time with respect to the variables α, β2, . . . , βk. (We will do this explicitly
for the more general logistic regression model two lectures from now.) It is easy to see that
∇2l(θ) is a constant quantity that does not involve Y1, . . . , Yn, so IY(θ) = −∇2l(θ).

Finally, since β̂i − β̂j is a linear combination of the coordinates of θ̂, it is approximately

normal when θ̂ is approximately multivariate normal. Its mean is E[β̂i − β̂j] ≈ βi − βj, and
its variance is

Var[β̂i − β̂j] = Cov[β̂i − β̂j, β̂i − β̂j]
= Var[β̂i] + Var[β̂j]− 2 Cov[β̂i, β̂j]

≈ (I−1Y (θ))ii + (I−1Y (θ))jj − 2(I−1Y (θ))ij.

We may estimate the standard error of β̂i − β̂j by the plug-in estimate

ŝeij =

√
(I−1Y (θ̂))ii + (I−1Y (θ̂))jj − 2(I−1Y (θ̂))ij.

A 95% confidence interval for βi − βj, assuming correctness of the Bradley-Terry model, is

then given by β̂i − β̂j ± z(0.025)ŝeij.
We will discuss, two lectures from now, some alternative estimates of the standard error

that are robust to model misspecification.
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