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12.1 Motivating Example: MLB Batting Averages

12.1.1 Single-Player Problem

Suppose player A’s batting average midway through the 2023 season is 0.300. Using no other information,
we want to predict his end-of-season batting average. We set up a model to do this.

Let N and H represent the number of at-bats and hits for player A to this point in the season. We assume
each at-bat {Xi}Ni=1 is an independent Bernoulli trial with success probability p. Then it follows that

H ∼ Binomial(N, p)

and since H =
∑N

i=1 Xi, we model player A’s mid-season batting average as

BA =
H

N
∼ 1

N
Binomial(N, p)

As discussed previously, the MLE of a binomial random variable is the observed proportion of successes,
which we write as

p̂MLE =
H

N

We can use this for prediction, but we saw that this may not be the most stable estimator in small samples.
In the previous lecture, we used a prior to stabilize the estimator, but without any other information, we
may not know which prior to use. Let’s consider a broader approach to the problem that will allow us to
inform our choice of prior.

12.1.2 Multi-Player Problem

Suppose now we know each player’s batting average midway through the 2023 sesason. Using no information
from any previous season (i.e. using only the 2023 mid-season averages), predict each player’s end-of-season
batting average.

We can easily extend our single-player model to the multi-player case. We set up notation for the multi-player
case as follows:

- i: player index

- n: total number of players

- Ni: number of at-bats for player i

- Hi: number of hits for player i
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- BAi =
Hi

Ni
: batting average for player i

We can then model each player’s batting average as before:

BAi =
Hi

Ni
∼ 1

Ni
Binomial(Ni, pi)

If we use the MLE for each player’s batting average, we arrive at a similar result as before:

p̂
(MLE)
i =

Hi

Ni

Our hope is to improve this guess with a prior, but how do we do that? We don’t have any other information,
so we can’t use a prior from a previous season. What can/should we shrink to?

12.1.3 Idea: Shrinkage by Pooling

Since we have the midseason batting average of each baseball player, perhaps we can pool information
across these players and shrink to the overall mean batting average. The insight here is that each player i
is a baseball player, and we can use that shared group information to improve our prediction. This means
we would predict player i’s end-of-season batting average as some mixture of their own mid-season batting
average and the overall mean batting average. Let’s modify our model to reflect this.

Let Xi =
Hi

Ni
be player i’s mid-season batting average. Then

Xi =
Hi

Ni
∼ 1

Ni
Binomial(Ni, p)

If we remove players i with a small number of at-bats (e.g. Ni < 30), we can use the fact that Ni are large
to apply the Central Limit Theorem from Lecture 8. That is,

Xi
approx∼ N

(
pi,

pi(1− pi)

Ni

)
by the CLT

Note that the proposed variance σ2
i = pi(1−pi)

Ni
depends on the unknown parameter pi, but it is much easier

to work with known variance. We make the following simplifying assumption that

σ2
i =

C

Ni

for some constant C. We’ll use C = 0.035 for our analysis, but we generally treat this as a hyperparameter
to be tuned using data from the previous season. An alternative approach is to use a variance-stabilizing
transformation h(X), which transforms the batting average so that it has a known variance. We will
discuss this at a later time.

In either case, we have that Xi ∼ N
(
µi, σ

2
i

)
where µi = pi and σ2

i is known. Now we can set up a parametric
Bayesian model to predict each player’s end-of-season batting average.
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12.2 Parametric Bayesian Model

12.2.1 Model Setup

We implement the Bayesian approach, modeling the unknown parameter µi = pi as a random variable with
its own distribution. We then set up our model as follows:{

Xi ∼ N
(
µi, σ

2
i

)
µi ∼ N

(
µ, τ2

)
Note that µ represents the global mean of all baseball players’ batting averages, and τ2 represents the

variance around this mean. Note also that µi, pi, µ, and τ are all unknown parameters, while σi =
√

C
Ni

is

assumed as known (from before).

12.2.2 MLE vs Posterior Mean

Recall from before that the MLE ignores all information from other players, instead only using the information
relevant to player i. Specifically, we know that the MLE of µi is the observed batting average Xi.

µ̂
(MLE)
i = Xi

The Bayesian analog of this quantity is the posterior mean, which we define below.

Definition 12.1 (Posterior Mean). The posterior mean of a random variable X is defined as

θ̂Bayes = E[θ|X] =

∫
θp(θ|X)dθ

In our case, the posterior mean of µi from the data {Xi}ni=1 is

µ̂
(Bayes)
i = E[µi|Xi]

To go further than this, we need the posterior distribution P(µi|Xi). We can derive this using Bayes’ rule:

P(µi|Xi) =
P(Xi|µi)P(µi)

P(Xi)
by Bayes’ Rule

∝ P(Xi|µi)P(µi) since P(Xi) is constant w.r.t. µi

From our model setup, we re-express the likelihood and prior as

P(µi|Xi) = P(N (µi, σ
2
i ) = Xi)P(N (µ, τ2) = µi)

=
1√
2πσ2

i

exp

(
− (Xi − µi)

2

2σ2
i

)
1√
2πτ2

exp

(
− (µi − µ)2

2τ2

)
∝ exp

[
−1

2

(
X2

i

σ2
i

− 2
Xiµi

σ2
i

+
µ2
i

τ2
+

µ2
i

τ2
− 2

µiµ

τ2
+

µ2

τ2

)]
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Since the first and last terms are constant w.r.t. µi, we omit them and factor to get

P(µi|Xi) ∝ exp

{
−1

2

[
µ2
i

(
1

σ2
i

+
1

τ2

)
− 2µi

(
Xi

σ2
i

+
µ

τ2

)]}

∝ exp

−1

2

(
1

σ2
i

+
1

τ2

)µ2
i − 2µi

(
Xi

σ2
i
+ µ

τ2

)
(

1
σ2
i
+ 1

τ2

)


∝ exp

−1

2

(
1

σ2
i

+
1

τ2

)µi −

(
Xi

σ2
i
+ µ

τ2

)
(

1
σ2
i
+ 1

τ2

)
2


We recognize this as a normal distribution, and so we can write

P(µi|Xi) ∼ N


(

Xi

σ2
i
+ µ

τ2

)
(

1
σ2
i
+ 1

τ2

) , 1(
1
σ2
i
+ 1

τ2

)


Since we have a posterior distribution with a recognizable form, we can extract the posterior mean directly
from the mean of the normal distribution. From Definition 12.1, we have that

µ̂
(Bayes)
i = E[µi|Xi]

=

(
Xi

σ2
i
+ µ

τ2

)
(

1
σ2
i
+ 1

τ2

)
= µ+

τ2

τ2 + σ2
i

(Xi − µ) (12.1)

And since we know that Xi =
Hi

Ni
and σ2

i = C
Ni

, we can write

µ̂
(Bayes)
i =

Hi

C + µ
τ2

Ni

C + 1
τ2

This looks a lot like the formulation we saw in the last lecture:

(W +W ′)

(W +W ′) + (L+ L′)

There’s still a problem though: we don’t know what µ or τ are! How do we estimate these parameters?
Empirical Bayes offers a solution to this problem.

12.3 Empirical Bayes

Empirical Bayes is a way to estimate the parameters of a Bayesian model (in our case µ and τ) using the
data itself. Specifically, this involves plugging in the MLEs of µ and τ into Equation 12.1, which we do to
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define the Parametric Empirical Bayes Estimator for our model.

µ̂
(EB)
i = µ̂+

τ̂2

τ̂2 + σ2
i

(Xi − µ̂) (12.2)

=
Hi

C + µ̂
τ̂2

Ni

C + 1
τ̂2

where µ̂ and τ̂2 are the MLEs of µ and τ2. Before we derive these estimate, let’s consider the implications
of different values of τ2 on the posterior mean.

12.3.1 Implications of Different τ 2 Values on Posterior Mean

If τ2 = 0, then µi ∼ N (µ, τ2)
d
= N (µ, 0) = µ.

If τ2 = ∞, then µi ∼ N (µ, τ2)
d
= Uniform(−∞,∞) and µ̂i = Xi =

Hi

Ni
= µ̂

(MLE)
i .

Otherwise, we have that µ̂i = µ̂+ τ̂2

τ̂2+σ2
i
(Xi − µ̂).

- Is closer to µ̂ if τ̂2

τ̂2+σ2
i
is small (meaning σ2

i is large, or Ni is small).

- Is closer to Xi if
τ̂2

τ̂2+σ2
i
is large (meaning σ2

i is small, or Ni is large).

Now we will proceed by deriving µ̂MLE and τ̂2MLE .

12.3.2 Deriving µ̂MLE and τ̂ 2MLE

Recall that our model is {
Xi ∼ N

(
µi, σ

2
i

)
µi ∼ N

(
µ, τ2

)
Since we want to find the MLE of µ and τ2, we need to maximize the likelihood function L(µ, τ2 | Xi). Like
we did in Lecture 10, we will instead maximize the log-likelihood function ℓ(µ, τ2 | Xi).

ℓ(µ, τ2 | Xi) = logP(X1, . . . , Xn | µ, τ2)

Since the Xi are independent, we have that

ℓ(µ, τ2 | Xi) = log

n∏
i=1

P(Xi | µ, τ2)

=

n∑
i=1

logP(Xi | µ, τ2)
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From Bayes’ Rules, we have that P(Xi | µ, τ2) ∼ N
(
µ, τ2 + σ2

i

)
. So we have that

ℓ(µ, τ2 | Xi) =

n∑
i=1

logP(N (µ, τ2 + σ2
i ) = Xi)

=

n∑
i=1

log

[
1√

2π(τ2 + σ2
i )

exp

(
− (Xi − µ)2

2(τ2 + σ2
i )

)]

=

n∑
i=1

{
log

(
1√

2π(τ2 + σ2
i )

)
− (Xi − µ)2

2(τ2 + σ2
i )

}

∝ −1

2

n∑
i=1

log(τ2 + σ2
i )−

1

2

n∑
i=1

(Xi − µ)2

τ2 + σ2
i

Then we have that

MLE(µ, τ2) = argmax
µ,τ2

ℓ(µ, τ2 | Xi)

which we can solve by taking the derivative with respect to µ and τ2 and setting them equal to 0. First, for
µ:

∂

∂µ

[
ℓ(µ, τ2 | Xi)

]
=

1

2

n∑
i=1

2(Xi − µ)

τ2 + σ2
i

= 0

=⇒ µ̂MLE =

∑n
i=1

Xi

τ2+σ2
i∑n

i=1
1

τ2+σ2
i

Now we take the derivative with respect to τ2:

∂

∂τ2
[
ℓ(µ, τ2 | Xi)

]
= −1

2

n∑
i=1

1

τ2 + σ2
i

+
1

2

n∑
i=1

(Xi − µ)2

(τ2 + σ2
i )

2
= 0

=⇒
n∑

i=1

(Xi − µ)2

(τ̂2MLE + σ2
i )

2
=

n∑
i=1

1

τ̂2MLE + σ2
i

Now, we have a slight problem: our expression for µ̂MLE depends on τ2, and our expression for τ̂2MLE

depends on µ̂. We can solve this by iterating.

1. Make initial guesses µ(0) and τ2(0).

2. While |µ(t) − µ(t−1)| ≤ δ and |τ2(t) − τ2(t−1)| ≤ δ, do the following in R:

Set µ̂(t) =

∑n
i=1

Xi

τ2
(t−1)

+σ2
i∑n

i=1
1

τ2
(t−1)

+σ2
i

Set τ̂2(t) to the solution of

n∑
i=1

(Xi − µ̂(t))
2

(τ̂2(t−1) + σ2
i )

2
=

n∑
i=1

1

τ̂2(t−1) + σ2
i

using the uniroot function

3. Iterate until convergence to µ̂MLE and τ̂2MLE .
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12.3.3 Results

We plot the predicted batting averages for the 2023 season (µ̂i) in Figure 12.1, with the MLE on the x-axis
and the Empirical Bayes estimate on the y-axis. Note that the size of the points is proportional to the
number of at-bats (Ni) for each player.

Figure 12.1: Comparison of MLE and EB estimates of 2023 end-of-season batting averages. The diagonal
represents the identity line EB = MLE.

As we can see, players with smaller Ni have µ̂
(EB)
i shrunk towards the overall mean, while players with larger

Ni have µ̂
(EB)
i ≈ µ̂

(MLE)
i , their mid-season batting averages. When we plot both estimates against the end-

of-season batting averages in Figure 12.2, we don’t see much of a difference between the two. However,
considering their respective RMSE’s in Figure 12.3, we see that the Empirical Bayes estimate achieves better
prediction than the actual mid-season batting averages (MLE).

Figure 12.2: Comparison of MLE and EB estimates of end-of-season batting averages against the actual
2023 end-of-season batting averages. The diagonal represents the identity line BA = B̂A.
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Figure 12.3: RMSE of the MLE and EB estimates of 2023 end-of-season batting averages.

12.3.4 Takeaways

- Shrinkage towards the overall mean helps prediction, especially when we have small sample sizes.

- Sharing information across players helps, and Empirical Bayes allows us to estimate these global
parameters directly from the data.

12.3.5 If We Had Access to Previous Seasons

What if we had access to previous seasons’ data? Consider our Parametric Empirical Bayes Estimator from
Equation 12.2:

µ̂
(EB)
i = µ̂+

τ̂2

τ̂2 + σ2
i

(Xi − µ̂)

where µ̂ and τ̂2 are the MLEs of µ and τ2. This is one example of a class of shrinkage estimators, which we
will define generally now.

Definition 12.2 (General Shrinkage Estimator). A general shrinkage estimator θ̂i takes the form

θ̂i = θ̂ + β(Xi − θ̂)

where θ̂ is the baseline (often the MLE or mean), β ∈ [0, 1] is the shrinkage parameter, and Xi is the observed
data.

The procedure to incorporate data from previous seasons is as follows:

1. Let {X(2022)
i }ni=1 be the observed mid-season batting averages from 2022, let µ̂(2022) be the overall

mean batting average from that season, and let µ̂
(2022)
i be the known end-of-season batting averages

from that year.

2. Estimate β using the following regression:

µ̂
(2022)
i = µ̂(2022) + β

(
X

(2022)
i − µ̂(2022)

)
+ ϵi

=⇒ µ̂
(2022)
i − µ̂(2022) = β

(
X

(2022)
i − µ̂(2022)

)
+ ϵi

=⇒ Yi = βXi + ϵi

where Yi = µ̂
(2022)
i − µ̂(2022) and Xi = X

(2022)
i − µ̂(2022). Call this estimate β̂.

3. Predict the end-of-season batting averages for the current season as follows:

µ̂
(2023)
i = µ̂(2023) + β̂

(
X

(2023)
i − µ̂(2023)

)
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