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13.1 Problem Setup

13.1.1 Revisiting the Problem

Recall our question from the previous lecture:

Suppose we know each player’s batting average midway through the 2023 season. Using no information from
any previous season (i.e. using only these mid-season batting averages), predict each player’s end-of-season
batting average.

We reduced this problem to estimating the parameters of the following model:{
Xi ∼ N (µi, σ

2
i )

µi ∼ N (µ, τ2)

where Xi is the observed mid-season BA for player i, µi is the latent ”true quality” of player i, σ2
i is a known

variance which depends on Ni, the number of at-bats for player i, and µ and τ2 are unknown hyperparameters
representing the overall mean and variance of the population of players.

We solved this previously with Empirical Bayes, and will now consider another perspective to understand
why this works.

13.1.2 Revising the Model

Since σ2
i is known, we can divide by σ2

i to remove some parameters:

- Xi ← Xi/σi

- θi ← µi/σi

Now suppose we are taking a frequentist approach, that is, we will think of each parameter as unknown fixed
constants rather than random variables (i.e. the unknown ”true” quality of each player). Then we are left
with the model:

Xi
ind∼ N (θi, 1), i = 1, . . . , k

and our task is to estimate the fixed unknown constants θi (the normal means) given the data {Xi}ki=1 to
optimize the composite loss function

L(θ, θ̂) =

k∑
i=1

(
θi − θ̂i

)2

where θ = (θ1, . . . , θk) are the true parameters to be estimated, and θ̂ = (θ̂1, . . . , θ̂k) are our estimates.
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The performance of the joint estimator θ̂ is judged by the risk function, or the expected loss:

R(θ, θ̂) = EL(θ, θ̂)

This simple setup leads to one of the most significant results in mathematical statistics: Stein’s Paradox and
Shrinkage Estimation.

13.2 Shrinkage Estimation

13.2.1 Starting Point: The MLE

The estimation problem above involves pairs of values Xi, θi, i = 1, . . . , k where one element of each pair
is known (Xi) and one (θi) is unknown. The ”obvious” or ordinary estimator is just θ̂i = Xi, which is the
Maximum Likelihood Estimator (MLE) we’re already familiar with! This estimator maximizes the
probability of observing the data we did.

θ̂(MLE) = argmax
θ

P(data | θ)

= argmax
θ

P(X1, . . . , Xk | θ1, . . . , θk)

By assumed independence between the Xi and the monotonicity of the log function, we have

θ̂(MLE) = argmax
θ

k∏
i=1

P(Xi | θi)

= argmax
θ

k∑
i=1

logP(Xi | θi)

Then from our model, we have

θ̂(MLE) = argmax
θ

k∑
i=1

logN (Xi; θi, 1)

= argmax
θ

k∑
i=1

log

[
1√
2π

exp

(
−1

2
(Xi − θi)

2

)]

= argmax
θ

k∑
i=1

−1

2
(Xi − θi)

2

= X

where X = (X1, . . . , Xk).

In terms of our baseball example, this means just predict using each player’s mid-season batting average.
However, as we saw in the last lecture, these predictions are terrible. But here θ̂ are unknown fixed
constants and a prior is mis-specified. Why does it work?

13.2.2 Visualizing the Problem

Recall that this estimation problem involves pairs of values Xi, θi, i = 1, . . . , k where one element of each
pair is known (Xi) and one (θi) is unknown. Since the θi’s are unknown, we cannot plot the pairs, but we
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can imagine what such a plot would look like to understand the problem. Such a plot is included in Figure
13.1.

Figure 13.1: A hypothetical bivariate plot of the pairs Xi, θi, i = 1, . . . , k.

Since X is N (θ, 1), we can think of the Xi as being generated by N (0, 1) ”errors” to the given θi’s. So the
horizontal deviates of the Xi’s from the 45◦ line θ = X are independent N (0, 1) random variables. Our goal
is to estimate all the θi’s given all of the Xi’s with no assumptions about a possible distributional structure
for the θi’s: they are simply to be viewed as unknown constants.

13.2.3 The Galtonian Perspective

Q: Why should we expect that the ordinary estimator θ̂ = X can be improved upon?

Well, if the θi’s and hence the pair (Xi, θi) had a known joint distribution, a natural method of proceeding

is θ̂ = E[θ |X] and use this, the theoretical regression function of θ on X, to generate estimates of the θi’s
by evaluating it for each Xi. This is an unattainable ideal though, because we do not know the conditional
distribution of θ given X.

Moreover, we don’t assume that our uncertainty about the unknown constants θi can be described by a
probability distribution at all; we are relying purely on frequentist principles. We do however know the
conditional distribution of X given θ, N (θ, 1), and we can calculate E[X | θ]. Indeed, this theoretical

regression line corresponds to the 45◦ line θ = X, and this line yields the ordinary estimators θ̂(MLE) = X.

So the ordinary estimator may be viewed as being based on the ”wrong” regression line, on E[X | θ] instead
of E[θ |X].

As Francis Galton knew in the 1880s, the regressions of X on θ and θ on X can be markedly different, as
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you’ll show in the Homework . He suggested that this ordinary estimator could be improved upon, and even
suggested a method for doing so: by attempting to approximate E[θ |X] in a setting where the θi’s do not
have a distribution.

With no distributional assumptions on the θi’s, we are of course prevented from looking at an optimal
estimator of E[θ | X]. Instead we note that θ̂(MLE) = X is a linear function of X, and we can look for a

best linear estimtor of the form θ̂ = a+ bX so as to minimize the composite loss function

L(θ, θ̂) =

k∑
i=1

(
θi − θ̂i

)2

=

k∑
i=1

(θi − (a+ bXi))
2

If the θi’s are known, we would have a standard simple linear regression problem with the best linear
estimator given by the regression line

θ̂ = θ̄ + β̂(X − X̄)

where

β̂ =

∑k
i=1(Xi − X̄)(θi − θ̄)∑k

i=1(Xi − X̄)2

These θi’s are unknown, but if we could estimate the functions of these unknown parameters (θ̄ and β̂), we
could estimate the regression line of θ on X. What can we use to estimate these functions?

13.2.4 Deriving the Best Linear Shrinkage Estimator

First, we can use the sample mean X̄ to estimate θ̄. Then for the slope β̂:

β̂ =

∑k
i=1(Xi − X̄)(θi − θ̄)∑k

i=1(Xi − X̄)2

=
SXθ

S2
X

where

S2
X =

k∑
i=1

(Xi − X̄)2

is the sample variance of the Xi’s, an unbiased estimator of Var(X) and

SXθ =

k∑
i=1

(Xi − X̄)(θi − θ̄)

is the sample covariance of X and θ, an unbiased estimate of Cov(X,θ). Of these two, SXθ is unknown, so
we’ll need to estimate it from the data. Since X = θ+ϵ where ϵ ∼ N (0, 1) and Var(X) = Var(θ)+Var(ϵ) =
Var(θ) + 1, we have that

Cov(X,θ) = Cov(θ + ϵ,θ)

= Var(θ) + Cov(ϵ,θ)
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And since ϵ is independent of θ, Cov(ϵ,θ) = 0 and we have that

Cov(X,θ) = Var(θ) = Var(X)− 1

so S2
X − 1 and SXθ have the same expectation, and

β̂ =
SXθ

S2
X

=

∑k
i=1(Xi − X̄)(θi − θ̄)∑k

i=1(Xi − X̄)2

≈
∑k

i=1(Xi − X̄)2 − (k − 1)∑k
i=1(Xi − X̄)2

= 1− k − 1∑k
i=1(Xi − X̄)2

This leads to the Efron-Morris estimated least-squares line:

θ̂(EM) = X̄ +

(
1− k − 1

S2
X

)
(X − X̄), where S2

X =

k∑
i=1

(Xi − X̄)2

James-Stein’s original shrinkage estimator can be derived by considering the class of estimators that
are linear in X with 0 intercept,

θ̂ = bX

where b is a constant. The least squares estimator has

β̂ =

∑k
i=1 θiXi∑k
i=1 X

2
i

and θiXi has the same expectation as
∑k

i=1 X
2
i − k, which yields the James-Stein shrinkage estimator:

θ̂(JS) =

(
1− k

S2
X

)
X, where S2

X =

k∑
i=1

(Xi − X̄)2

13.2.5 Comparing the Estimators

So the ordinary estimators θ̂(MLE) = X are derived from the theoretical regression line of X on θ, which is
useful if our goal is to predict X from θ. But our goal is the opposite, to predict θ from X with the sum of
squares criterion:

k∑
i=1

(
θi − θ̂i

)2

So the optimal estimator is the least squares regression line of θ on X, and the James-Stein and Efron-
Morris estimators are themselves approximations of this correct regression line. It turns out that both of
these estimates are better (have less risk) than the ordinary estimate (the MLE), but we need to show this.
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Let θ̂(b) = bX represent the class of linear estimators with zero intercept. The Risk is:

R(θ, θ̂(b)) = EL(θ, θ̂(b))

= E
k∑

i=1

(
θi − θ̂i

)2

= E
k∑

i=1

(
θi − θ̂

(LS)
i + θ̂

(LS)
i − θ̂

(b)
i

)2

where θ̂
(LS)
i = β̂Xi and β̂ =

∑k
i=1 θiXi∑k
i=1 X2

i

. Then

R(θ, θ̂(b)) = E

[
k∑

i=1

(
θi − θ̂

(LS)
i

)2

+ 2
k∑

i=1

(
θi − θ̂

(LS)
i

)(
θ̂
(LS)
i − θ̂

(b)
i

)
+

k∑
i=1

(
θ̂
(LS)
i − θ̂

(b)
i

)2
]

Since the residuals θi − θ̂
(LS)
i are orthogonal to any linear function of Xi, the second term equals 0 by the

orthogonality principle, and

R(θ, θ̂(b)) = E

[
k∑

i=1

(
θi − θ̂

(LS)
i

)2

+

k∑
i=1

(
θ̂
(LS)
i − θ̂

(b)
i

)2
]

= E

[
k∑

i=1

(
θi − θ̂

(LS)
i

)2
]
+ E

[
k∑

i=1

(
θ̂
(LS)
i − θ̂

(b)
i

)2
]

= R(θ, θ̂(LS)) + E

[
k∑

i=1

(
β̂Xi − bXi

)2
]

= R(θ, θ̂(LS)) + E
[(

β̂ − b
)2

S2
X

]
where S2

X =

k∑
i=1

X2
i

So a James-Stein estimator will improve on the ordinary estimator if and only if

E
[(

β̂ − b
)

2S2
X

]
< E

[(
β̂ − 1

)
2S2

X

]
for all θ

Since b̂ is a ”reasonable” estimator of β but the constant 1 is not, we can expect the James-Stein estimator
to dominate the MLE. This leads us into a landmark result in statistics: Stein’s Paradox.

13.3 Stein’s Paradox

Theorem 13.1 (Stein’s Paradox). Suppose {Xi}ki=1 are drawn independently by Xi ∼ N (θi, 1). Then the
James-Stein estimator of θ,

θ̂(JS) =

(
1− C

S2
X

)
X, where S2

X =

k∑
i=1

(Xi − X̄)2, k ≥ 3, and 0 < C ≤ 2(k − 2)
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and the Efron-Morris estimator of θ,

θ̂(EM) = X̄ +

(
1− C

S2
X

)
(X − X̄), where S2

X =

k∑
i=1

(Xi − X̄)2, k ≥ 4, and 0 < C ≤ 2(k − 3)

both uniformly dominate (i.e. have uniformly-lower squared error risk) the ”obvious” maximum likelihood
estimator of θ,

θ̂(MLE) = X

Concisely,

R(θ, θ̂(JS)) < R(θ, θ̂(MLE)) ∀ θ

R(θ, θ̂(EM)) < R(θ, θ̂(MLE)) ∀ θ

See [SS] for a formal proof.

13.3.1 Shrinkage

Why do we call these estimators ”shrinkage” estimators?

- The James-Stein estimator θ̂(JS) is the weighted average of 0 and X, and so shrinks the ordinary
estimator θ̂(MLE) = X towards 0.

- The Efron-Morris estimator θ̂(EM) is the weighted average of X̄ and X, and so shrinks the ordinary
estimator θ̂(MLE) = X towards X̄.

These shrinkage estimators dominate the ordinary estimator θ̂(MLE) = X as long as k ≥ 3 for the James-
Stein estimator and k ≥ 4 for the Efron-Morris estimator.

13.3.2 Connection to Empirical Bayes

Recall the Empirical Bayes estimator of θ is given by

θ̂(EB) = X̄ +

(
τ2

τ2 + 1

)
(X − X̄)

This estimator has the same form as the Efron-Morris estimator, shrinking towards the overall mean X̄.
Here, the prior variance τ2 (where θi ∼ N (θ, τ2)) determines how much the estimator shrinks towards the
overall mean.

13.3.3 The Paradox

To estimate θi, one of our parameters, it is optimal to use information from all the other observations
{Xj}j ̸=i, via X̄ and S2

X , even though the Xi are drawn independently and are all unrelated in the sense
that each has its own mean θi. This seems preposterous!

How can information about player A’s batting average and player B’s batting average help us improve our
estimate of player C’s batting average? How could information about the price of apples in Washington and
the price of oranges in Florida help us improve our estimate of the price of French wine, when it’s assumed
they’re unrelated? Herein lies the paradox.
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13.3.4 Consultant’s Dilemma

Suppose that in the middle of the season, an MLB general manager asks you to predict the end-of-season
batting average of one player on his team, player A, using only that season’s available data.

The estimator that is best on average across all players (a shrinkage estimator) is different than the estimator
that is best for one specific individual player (the MLE).

Optimizing for the squared error aggregated across all players is not the same as optimizing for the errors
of separate estimators of the individual parameters. A combined shrinkage estimator should be used to
optimize a combined loss, but this combined estimator is worse if we want to estimate just one individual
parameter.

So... which estimator should we use?
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