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ABSTRACT
The standard mathematical approach to fourth-down decision-making in American football is to make the
decision that maximizes estimated win probability. Win probability estimates arise from machine learning
models fit from historical data. These models attempt to capture a nuanced relationship between a noisy
binary outcome variable and game-state variables replete with interactions and non-linearities from a finite
dataset of just a few thousand games. Thus, it is imperative to knit uncertainty quantification into the fourth-
down decision procedure; we do so using bootstrapping. We find that uncertainty in the estimated optimal
fourth-down decision is far greater than that currently expressed by sports analysts in popular sports media.
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1. Introduction

In-game strategic decision making is one of the fundamental
objectives of sports analytics. To mathematically compare strate-
gies, analysts need a value function that measures the value of
each game-state. The optimal decision maximizes the value of
the next game-state. Across sports, however, value functions are
not observable quantities; they are defined by models. It is the
sports analysts’ task to infer the value of each game-state from
the dataset of all plays in the recent history of a given sport.

The two most widely used value functions by analysts of
American football are win probability and expected points
(Yurko, Ventura, and Horowitz 2018). Win probability (WP)
measures the probability that the team with possession at the
current game-state wins the game. Expected points (EP) mea-
sures the expected value of the net number of points of the
next score in the game, relative to the team with possession,
given the current game-state. The most prominent example of
analysts using these value functions to dictate in-game strategy is
fourth-down decision making. On fourth down, a football coach
has three choices: go for it (Go), attempt a field goal (FG), or
punt the ball (Punt). Previous work by Romer (2006) and Burke
(2009) suggest making the decision that maximizes estimated
EP. Yet a team’s goal is to win the game, not score more points on
average, so EP is the wrong objective function. Hence, modern
approaches by Baldwin (2021) and Burke1 suggest making the
decision that maximizes estimated WP. Each of these analyses

CONTACT Ryan S. Brill ryguy123@sas.upenn.edu Graduate Group in Applied Mathematics and Computational Science, University of Pennsylvania, Academic
Research Building, 265 South 37th Street, 3rd & 4th Floors, Philadelphia, PA 19104-1686
1Burke releases fourth-down decision recommendations with the ESPN analytics team, and their recommendation algorithm is proprietary.

found that National Football League (NFL) coaches are too
conservative on fourth down; they often settle for kicks even
when they should go for it.

The win probability estimates used for fourth-down decision
making typically arise from statistical models fit from historical
data. Given the play-by-play results of the entire recent history
of football, these models fit the relationship between a binary
win/loss outcome variable and certain game-state variables
using data-driven regression or machine learning approaches.
Analysts then recommend the optimal decision according to the
model. This approach overlooks the uncertainty inherent in esti-
mating win probability with limited data. The win/loss outcome
variable is noisy and there are only a few thousand games in the
dataset that produce an outcome. The outcome variable, more-
over, is not independent across plays because every non-tied
game has only one winner, which reduces the effective sample
size of the dataset. Therefore, it is critical to quantify uncertainty
in win probability estimates. This uncertainty should percolate
into the fourth-down decision procedure.

Our focus is not to “fix” win probability models by adjusting
for additional covariates or reducing model bias. Rather, we shed
light on the high variance nature of estimating win probability
and show that such estimates are subject to nontrivial uncer-
tainty. We use bootstrapping to quantify uncertainty in fourth-
down recommendations and recommend a decision when we
are confident it has higher WP than all other decisions. We find
that far fewer fourth-down decisions are as obvious as previously
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thought. Thus, we ask football analysts to have some humility:
for many game-states, there is simply not enough data to trust
WP point estimates.

The remainder of this article is organized as follows. In
Section 2 we estimate win probability and detail the traditional
fourth-down decision procedure. In Section 3 we knit uncer-
tainty quantification into the decision procedure. In Section 4
we present our main findings and we conclude in Section 5.

2. The Traditional Fourth-Down Decision Procedure

The standard fourth-down decision procedure involves making
the decision that maximizes estimated win probability. In this
section we overview this procedure and detail how analysts
commonly estimate win probability today. We begin with a brief
overview of our historical dataset of football plays in Section 2.1.
Then in Section 2.2 we illustrate the traditional decision process
through example plays. In Section 2.3 we estimate the win proba-
bility of a fourth-down decision. These estimates are functions of
first-down win probability and decision transition probabilities,
which we estimate in Sections 2.4 and 2.5, respectively.

2.1. Data

We access every NFL play from 1999 to 2022 using the R
package nflFastR (Carl and Baldwin 2022). Each play includes
variables that describe the context of the play, which are relevant
to estimating win probability, such as the score differential, time
remaining, yards to opponent endzone (i.e., yardline), down,
yards to go, etc. (see Table A1 in Appendix A for descriptions
of relevant variables). Note that yards to opponent endzone is
an integer in {0, 1, . . ., 99, 100}, where 0 represents a touchdown
and 100 indicates a safety. Holding out plays from 1999 to 2005
and from 2022 for various models and validation procedures
discussed later in this article, we are left with a primary dataset of
600,825 plays, with 229,635 first-down plays and 4101 non-tied
games from 2006 to 2021, henceforth referred to as the “observed
play-by-play football dataset.” We fit our win probability models
using this dataset. The code for this study, which includes code
to scrape the dataset used in this study, is publicly available on
Github.2

2.2. Example Plays

The strength of a traditional decision recommendation is pro-
portional to the effect size, or the estimated gain in win probabil-
ity by making that decision. Notably, Baldwin (2021) and Burke
employ this decision procedure and post their fourth-down
recommendations on X (formerly known as Twitter).3 Baldwin
has posted a recommendation for many fourth-down plays since
at least 20214 and Burke has posted a recommendation for
select fourth down plays since at least 2022. We illustrate this
procedure through two example plays.

2https://github.com/snoopryan123/fourth_down
3Baldwin’s posts his fourth-down recommendations at @ben_bot_
baldwin and Burke posts his at @bburkeESPN.

4As of the writing of this article,@ben_bot_baldwin has over 11,000 posts
(decision recommendations) on X.

Figure 1. Baldwin’s decision charts for example play 1. The top image summarizes
his models’ outputs for each decision, including estimated fourth-down win proba-
bility (in red), Go/FG success probability (second column), and win probability given
Go/FG failure or success (third and fourth column). The bottom image is a screenshot
of his post on X, which summarizes the recommended decision and the actual play.

Figure 2. Burke’s decision boundary chart for example play 2. The chart visualizes
the estimated optimal decision according to effect size (color) as a function of yards
to opponent endzone (x-axis) and yards to go (y-axis), holding the other game-
state variables constant. The yellow dot denotes the actual play’s yards to opponent
endzone and yards to go.

Example play 1. First, we consider an example of Baldwin’s
fourth-down decision charts. Figure 1 illustrates his charts for
a fourth-down play in which the Patriots had the ball against
the Colts in Week 10 of 2023. Baldwin views Go as a “strong”
decision because he estimates that going for it provides a 3.6%
gain in win probability over attempting a field goal.

Example play 2. Next, we give an example of Burke’s decision
chart. Figure 2 illustrates his chart for a play from the 2023
NFC Championship game. Burke views Go as the right decision
because the yellow dot (denoting the actual play’s yardline and
yards to go) lies squarely in the red region (denoting that Go

https://github.com/snoopryan123/fourth_down
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is the estimated optimal decision) and is far from the decision
boundary.

2.3. Estimating the Win Probability of a Fourth-Down
Decision

An offense has three possible decisions to make on fourth down:
it can punt the ball, kick a field goal, or attempt a conversion
(colloquially known as “going for it”), denoted Punt, FG, and
Go, respectively. In this section we estimate the win probability
of a fourth-down decision in {Punt, FG, Go} in terms of first-
down win probability (denoted WP1) and decision transition
probabilities (punt outcome distribution, field goal success prob-
ability, and conversion outcome distribution). We estimate first-
down win probability in Section 2.4 and decision transition
probabilities in Section 2.5.

Punt win probability. Suppose the offensive team has posses-
sion on fourth down at yardline y and denote the remainder of
the game-state by x. If the offensive team punts, the opposing
team has possession on first down at the subsequent yardline,
which we model as a random variable. Hence, the win prob-
ability of punting is one minus the opponent’s first-down win
probability at the next yardline y′ and next game-state x′,

∑
y′

(1 − WP1(yardline y′, x′))

·P(yardline after punting is y′|x). (1)

The next game-state x′ flips the current game-state variables in x
that are relative to the team with possession (e.g., score differen-
tial, team quality metrics, timeouts remaining, etc.) and doesn’t
alter the other variables (e.g., time remaining). We re-write this
expression in terms of the expectation over the outcome of the
punt,

Epunt[1 − WP1(yardline y′, x′)|x]. (2)

First-down win probability is mostly linear in yardline at most
game-states, so for simplicity we instead compute win probabil-
ity at the expected next yardline after punting,

1 − WP1(yardline Epunt[y′|x], x′). (3)

We model the expected next yardline after punting as a function
of yardline and punter quality in Section 2.5.

FG win probability. We decompose field goal win probability
in terms of field goal success probability and first-down win
probability on the subsequent play,

WP(make FG) · P(make FG)

+WP(miss FG) · (1 − P(make FG)). (4)

We model the probability of a successful field goal as a function
of yardline and kicker quality in Section 2.5. If the kicking team
misses the field goal and the spot of the kick is within 20 yards
to the opponent’s endzone, the opposing team has a first-down
possession at 80 yards to the opponent’s endzone. If the kicking
team misses the field goal and the spot of the kick is beyond 20
yards to the opponent’s endzone, the opposing team has a first-
down possession at the spot of the kick. The spot of the kick is
typically 7 yards behind the line of scrimmage, so in terms of

the current yardline y, the next yardline relative to the opposing
team is min{80, 100 − (y + 7)}. Denoting the remaining game-
state variables relative to the opposing team at the next play by
x′, we have

WP(miss FG) = 1 − WP1(yardline min{80, 100 − (y + 7)}, x′).
(5)

If the kicking team makes the field goal, it scores three points and
the opposing team has a first-down possession after a kickoff.
Denoting the score differential relative to the kicking team by s,
we have

WP(make FG) = 1 −Ekickoff[WP1(yardline y′, s′ = −s − 3, x′)].
(6)

As we did in estimating Punt win probability, for simplicity we
instead compute win probability at the expected next yardline
after a kickoff,

WP(make FG) ≈ 1−WP1(yardline Ekickoff[y′], s′ = −s−3, x′).
(7)

The vast majority of kickoffs end in a touchback (yardline 75),5
so for simplicity we instead compute

WP(make FG) ≈ 1 − WP1(yardline 75, s′ = −s − 3, x′). (8)

Go win probability. Suppose the offensive team has possession
on fourth down and z yards-to-go at yardline y. If the offensive
team goes for it and gains � ≥ z yards, then in the next play it
either has possession on first down at yardline y − � or scores
a touchdown. Conversely, if the offensive team goes for it and
gains � < z yards, then in the next play the opposing team has
possession on first down at yardline 100 − (y − �). Hence, the
expected value of going for it on fourth down is

Ego
[
I (� ≥ z) · WP1(yardline y − �)

+I (� < z) · (1 − WP1(yardline 100 − (y − �)))
]
. (9)

This quantity is implicitly a function of the game-state.
This expectation is defined in terms of the conversion out-

come conditional density Pgo(gain � yards|x). This distribu-
tion is highly complex, nonnormal, and non-symmetric. For
instance, pass plays feature a spike at zero yards gained for
incompletions. The mean yards gained and the tail vary as yard-
line changes. There is a spike at the endzone for touchdowns,
which increases as the yardline approaches the endzone. The
density differs for each team depending the particularities of a
team’s play calling and personnel. Recent research has gone into
estimating this conditional density: Biro and Walker (2023a)
model the conditional density of a run play using a skew-t
distribution and Biro and Walker (2023b) model the conditional
density of a pass play using a generalized gamma distribution,
which they fit using Markov chain Monte Carlo methods.

For simplicity, we instead switch the order of the expectation
and WP1 as we did in estimating Punt and FG win probability,

P(� ≥ z|x) · WP1(yardline y − Ego[�|x, � ≥ z], x′)
+ P(� < z|x) · (1 − WP1(yardline 100
− (y − Ego[�|x, � < z]), x′)). (10)

5It is worth noting that the new NFL kickoff rule will change this (see
https://operations.nfl.com/the-rules/rules-changes/dynamic-kickoff-rule-
explainer/ ).

https://operations.nfl.com/the-rules/rules-changes/dynamic-kickoff-rule-explainer/
https://operations.nfl.com/the-rules/rules-changes/dynamic-kickoff-rule-explainer/
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Here, x is the game-state on fourth down and x′ is the game-state
on the subsequent play (which, as before, flips the game-state
variables that are relative to the team with possession and doesn’t
alter the other variables). We model the expected outcome of
a successful conversion attempt Ego[�|x, � ≥ z], that of a
failed conversion attempt Ego[�|x, � < z], and conversion
probability P(� ≥ z|x) in Section 2.5.

2.4. Estimating First-Down Win Probability

Now, we estimate first-down win probability as a function of
game-state. Win probability estimates arise broadly from one
of two classes of models, probabilistic state-space models or
statistical models. On one hand, state-space models simplify the
game of football into a series of transitions between game-states.
Transition probabilities are estimated from play-level data and
are then propagated into win probability by simulating games.
When implemented correctly, these models are sensible ways
to estimate WP. However, they are difficult in practice, as they
require: a careful encoding of the convoluted rules of football
into a set of states and the actions between those states, careful
estimation of transition probabilities, and enough computing
power to run enough simulated games to achieve desired gran-
ularity. Each of these are nontrivial.

On the other hand, statistical models are fit entirely from
historical data. Given the results of a set of observed football
plays, statistical models fit the relationship between certain
game-state variables using data-driven regression or machine
learning approaches. These models are widely used today in
football analytics thanks to the accessbility of publicly available
play-by-play data (e.g., nflFastR(Carl and Baldwin 2022)) and
accessible off-the-shelf machine learning models (e.g., XGBoost
(Chen and Guestrin 2016)). Additionally, due to a perceived
abundance of data, flexible machine learning models are viewed
as more “trustworthy” than previous mathematical models that
make more simplifying assumptions. For these reasons, the open
source win probability models used today in football analytics
are statistical/machine learning models, which we focus on in
this paper.

Lock and Nettleton (2014) use a Random Forest (RF)
(Breiman 2001) to estimate win probability from historical data.
The response variable is a binary variable indicating whether the
team with possession wins the game. They model win probabil-
ity as a function of score differential, game seconds remaining,
yards to opponent endzone, down, yards to go, the number of
timeouts remaining for each team, pre-game point spread, total
points scored, and an additional feature to capture the change in
impact of score differential over the course of a game,

adjusted score = score differential√
1 + game seconds remaining

. (11)

They use a Random Forest of 500 regression trees with parame-
ters mtry = 2 and nodesize = 200.

Baldwin (2021) uses XGBoost (Chen and Guestrin 2016) to
estimate win probability from historical data. He uses the same
binary win/loss response variable as before. Baldwin models
win probability as a function of score differential, game seconds
remaining, half seconds remaining, yards to opponent endzone,

down, yards to go, whether the team with possession is at home,
whether the team with possession receives the second half kick-
off, and the number of timeouts remaining for each team. He
uses two additional features to capture the change in impact of
point spread and score differential over the course of a game,

spread-time = (point spread)

· exp
(

− 4 ·
(

1 − 3600
game seconds remaining

))

(12)

and

diff-time-ratio = (score differential)

· exp
(

− 4 ·
(

1 − 3600
game seconds remaining

))
. (13)

Baldwin includes monotonic constraints for yards to opponent
endzone, yards to go, down, score differential, timeouts remain-
ing for each team, spread-time, and diff-time-ratio. He tunes the
XGBoosthyper-parameters by minimizing cross validated log-
loss (Baldwin 2021).

We also initially considered the generalized additive model
(GAM) (Hastie and Tibshirani 1986) win probability model
from Yurko, Ventura, and Horowitz (2018) but opted in this
article to focus just on flexible nonparametric models because
we expect win probability to be replete with interactions between
variables.

The aforementioned models are fit from a historical play-by-
play dataset that includes plays from all downs. Those models fit
first-down win probability by including down as a covariate. We
fit an XGBoost model just using first-down plays. This model
predicts binary win/loss as a function of score differential, game
seconds remaining, pre-game point spread, yards to opponent
endzone, receive second half kickoff indicator, offensive team’s
number of timeouts remaining, defensive team’s number of
timeouts remaining, total score, and

scoreTimeRatio = score differential
0.01 + game seconds remaining

. (14)

We include monotonic increasing constraints for score differ-
ential, scoreTimeRatio, and offensive timeouts remaining and
monotonic decreasing constraints for point spread, yards to
opponent endzone, and defensive timeouts remaining.

Now, we compare the out-of-sample predictive performance
of various first-down win probability models. Our full dataset
consists of all football plays from 2006 to 2021. We split our
dataset in half by randomly sampling 50% of the games. The
first-down plays from the first 50% of these games form the
hold-out test set. All the plays from the other 50% of these
games form the training set. To tune the XGBoost models, we
split the training set in half by randomly sampling 50% of the
games from the training set. The plays from the first 50% of
these games form the XGBoost training set, and the remaining
plays form the validation set for hyper-parameter tuning. We
then tune our XGBoost models in a similar fashion as Baldwin
(2021). We view the results of our prediction contest in Table 1.
For reference, we include the predictive performance of two
baseline models, a fair coin (always predict 0.5) and a game-
level logistic regression model with one linear term for pre-game
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Table 1. Predictive performance of first-down win probability models.

Model
name

Model
type

Plays in
training data

Out-of-sample
logloss

Reduction
in error

Our proposed model XGBoost first downs 0.440 36.54%
Lock and Nettleton (2014) RF all downs 0.446 36.50%
Baldwin (2021) XGBoost all downs 0.476 31.27%
Pre-game point spread only logistic regression 0.609 12.10%
Fair coin a constant 0.693 0%

Figure 3. (a) The expected next yardline after a punt (y-axis) according to our model as a function of yardline (x-axis) and punter quality (color). (b) The probability of
making a field goal (y-axis) according to our model as a function of yardline (x-axis) and kicker quality (color).

point spread. Each model’s reduction in error (relative to a fair
coin) is the negative percent difference between it’s accuracy and
the fair coin’s. Our model fit from just first-down plays performs
the best out-of-sample. Thus, in the remainder of this paper we
use our proposed first-down win probability model.

2.5. Estimating Fourth-Down Decision Transition
Probabilities

Next, we estimate fourth-down decision transition probabilities.
We model the expected outcome (yardline) of a punt, field
goal success probability, conversion success probability, and the
expected outcome (yardline) of a successful or a failed conver-
sion attempt.

Punt expected outcome model. We use linear regression to
model the expected next yardline after a punt as a function of
yardline and punter quality (denoted pq, whose specification is
detailed in Appendix B),

Epunt[next yardline] = �α · B-spline
(
yardline, df = 4

)
+ β1 · pq + β2 · pq · yardline. (15)

We use a B-spline to capture a nonlinear trend in yardline
(de Boor 1978). The model is trained on a dataset of 36,493
punts from 2006 to 2021, all beyond the 30 yardline. We visualize
this model in Figure 3(a). The above expectation is more prop-
erly defined in terms of the punt outcome conditional density
Ppunt(next yardline|x). But, that distribution is difficult to model
(recall our discussion in Section 2.3 of modeling the conditional
density of yards gained). A more sophisticated analysis would
use that conditional density.

FG success probability model. We use logistic regression to
model the probability that a kicker makes a field goal as a
function of yardline and kicker quality (denoted kq, whose

specification is detailed in Appendix B),

log
(

P(make FG)

1 − P(make FG)

)
= �α · B-spline

(
yardline, df = 5

)
+ β · kq. (16)

Fitting this model on our dataset of 15,472 observed field goals
from 2006 to 2021 yields nontrivial probability predictions for
extremely long field goals that have never before been made (e.g.,
nontrivial probability for a 73-yard field goal from the 55 yards
to the opponent’s endzone). To shrink these field goal probability
predictions to zero, we impute 500 synthetic missed field goals,
randomly distributed from the 51 to 99 yards to the opponent’s
endzone, into our dataset. We visualize this model in Figure 3(b).

Go conversion probability model. Due to a small sample size of
fourth-down conversion attempts, some existing fourth-down
conversion probability models use third down as a proxy for
fourth down (e.g., Romer 2006), as they are also high-pressure
situations in which the offensive team attempts to obtain a first
down. But, there may be a fundamental difference in conversion
probability between third and fourth-down plays, perhaps due
to psychological reasons or a differing distribution of play calls.
In our model selection process, we train some models on a
dataset consisting entirely of fourth-down plays and other mod-
els on a dataset consisting of third and fourth-down plays, testing
models on a random 50% of fourth-down plays. The parameters
of our best conversion probability model borrow strength from
third-down plays.

We use logistic regression to model fourth-down conversion
probability as a function of yards to go, down (third vs. fourth
down), and a market-derived measure of how much better the
offensive team’s offensive quality is than the defensive team’s
defensive quality (denoted �TQ, or the difference in team qual-
ity, whose specification is detailed in Appendix B). Formally, we
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Figure 4. Fourth-down conversion probability (y-axis) according to our model as a
function of yards to go (x-axis) and the difference in offensive and defensive quality
(color).

model

log
(

P(convert)
1 − P(convert)

)

= �α1 · I (fourth down) (17)
· B-spline

(
log(yards to go + 1), df = 4

)
(18)

+ �α2 · I (third down)

· B-spline
(

log(yards to go + 1), df = 4
)

(19)
+ β0 + β1 · �TQ. (20)

We visualize this model in Figure 4.
Go expected outcome models. We use linear regression to

model the expected outcome (yards gained �) of a conversion
attempt with z yards to go given that it is successful by

Ego[�|x, � ≥ z]
= �α1 · I (fourth down) · B-spline

(
log(yards to go), df = 4

)
+ �α2 · I (third down) · B-spline

(
log(yards to go), df = 4

)
+ �α3 · I (

yards to go = 1
) · B-spline

(
yardline, df = 3

)
+ �α4 · I (

yards to go �= 1
) · B-spline

(
yardline, df = 4

)
+ β0 + β1 · �TQ. (21)

Similarly, we model the expected outcome of a conversion
attempt with z yards to go given that it is unsuccessful by

Ego[�|x, � < z] = α1 · I (fourth down) · log(yards to go + 1)

+ α2 · I (third down) · log(yards to go + 1)

+ β0 + β1 · �TQ.
(22)

These two expectations are more properly defined in terms of the
conversion outcome conditional density Pgo(gain � yards|x).
But, as discussed in Section 2.3, that distribution is highly
complex, nonnormal, and non-symmetric, making it difficult to
model. A more sophisticated analysis would use that conditional
density.

3. Fourth-Down Decision Making under Uncertainty

The standard approach, recommending the decision that maxi-
mizes estimated win probability, disregards the uncertainty that

arises from estimating win probability from a finite dataset.
Thus, in this section, we modify the fourth-down decision pro-
cedure to account for uncertainty.

Analysts may be inclined to trust estimates from win prob-
ability models because they are fit from an ostensibly massive
dataset: there are 600,825 plays and 229,635 first-down plays
in our play-by-play dataset. Nonetheless, several characteristics
of this dataset reveal just how difficult it is to estimate win
probability. First, the binary win/loss outcome variable is coarse.
Since win probability is a continuous quantity in the interval
[0, 1], to capture it with fine granularity from raw zeros and ones
requires a massive amount of data. Estimating win probability
as a function of game-state, with such a large set of possible
game-states, dramatically increases the difficulty of the task.
Win probability consists of complex nonlinear and interacting
relationships between game-state variables, not simple additive
relationships, which makes it even more difficult.

Moreover, the binary win/loss response variable is clustered:
all plays from the same game share the same win/loss outcome.
This dependence structure reduces the effective sample size,
which is somewhere between the number of first-down plays
(229, 635) and the number of non-tied games (4, 101) in our
dataset. According to the simulation study in Brill, Yurko, and
Wyner (2024), we effectively have half as much data as we think.
In other words, a win probability estimator fit from a dataset
consisting of half as many plays, but where each play has an
independent outcome, has the same accuracy as an estimator fit
from a clustered dataset like our historical play-by-play dataset.

Thus, there are likely not enough data to experience the full
variability of the nonlinear and interacting variables of score
differential, time remaining, point spread, yards to opponent
endzone, yards to go, timeouts, etc. In fitting win probability
models, we are in a limited-data context. Therefore, it is imper-
ative to incorporate uncertainty quantification into the fourth-
down decision procedure.

Since we estimate win probability using machine learning
models, we need a nonparametric method to quantify uncer-
tainty in these estimates. Bootstrapping is a natural choice to
capture such uncertainty. The bootstrapping process begins with
generating B bootstrapped datasets from our original dataset. To
do so, we use a randomized cluster bootstrap: resample games
uniformly with replacement and within each game resample
drives uniformly with replacement. According to the simulation
study in Brill, Yurko, and Wyner (2024), although the random-
ized cluster bootstrap achieves higher coverage than the stan-
dard iid bootstrap (resample plays uniformly with replacement),
it produces undercovered intervals that are too narrow. Thus, we
also tune our randomized cluster bootstrap using a fractional
bootstrap as recommended in Brill, Yurko, and Wyner (2024).
We choose an appropriate value for B (B = 101) in Appendix C.

Then, to each bootstrapped dataset, which represents a
redraw of the recent history of football, we fit a full fourth-
down decision model (described in Section 2). At each game-
state, each model yields an estimated optimal decision. To quan-
tify uncertainty in the estimated optimal decision, we bag the
decision itself. Specifically, we consider the bootstrap percentage
(boot%), or the percentage of bootstrapped models that report
each decision to be optimal. Formally, at game-state x we have
the original estimated optimal decision d(x) ∈ {Go, FG, Punt}
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(the point estimate) and B bootstrapped estimated optimal deci-
sions d1(x), . . ., dB(x). Then

boot%(x) = 100% · 1
B

B∑
b=1

I (db(x) = d(x)) . (23)

Bootstrap percentage quantifies how confident we are that
a recommendation has higher win probability than the other
decisions. A high boot% (≈ 100%) reflects high confidence:
the estimated optimal decision remains the same across the vast
majority of redraws of the training set. Conversely, a low boot%
(≈ 50%) reflects low confidence: the estimated optimal decision
differs substantially across different redraws of the training set.
A low boot% is ≈ 50% or lower because a fourth-down decision
almost always boils down to picking between Go and one of the
kicks, as it is clearly sub-optimal to punt near the opponent’s
endzone and to attempt a field goal far from the opponent’s
endzone.

Regardless of the effect size, when boot% is low we cannot
trust the point estimate: the effect size at that game-state is
too dependent on the random idiosyncrasies of its particular
training set. In other words, the edge detected by the point
estimate is more due to noise than signal.

We also consider confidence intervals on the effect size
g(x), the gain in win probability by making a fourth-down
decision at game-state x. Given the original estimated effect
size ĝ(x) and the B bootstrapped effect sizes ĝ1(x), . . ., ĝB(x),
sorted from least to greatest, we construct a confidence inter-
val on the effect size using the quantiles. For B = 101, a
90% confidence interval on the effect size is [ĝ6(x), ĝ96(x)].
This confidence interval represents the following: assume that
the win/loss outcomes across football history are generated by
some underlying win probability function. If we re-simulated
the history of football B times from that WP function, keeping
the pre-game conditions of each game the same, the true win
probability is expected to lie in the 90% confidence interval 0.9·B
times.

We find it easier for bootstrap percentage to drive decision
making than confidence intervals because the former is defined
by one number whereas the latter is defined by two numbers.
For example, consider a play in which the estimated gain in win
probability for Go is 1%. If our confidence interval for this gain
is [−3%, 5%], it is not clear how strongly we should recommend
Go. Similarly, it is difficult to compare two confidence intervals
of varying lengths. For example, it is not clear whether our
recommendation for a confidence interval of [−3%, 5%] should
be weaker than that for a confidence interval of [−1%, 3%].
Also, our primary interest is to quantify uncertainty in the
decision itself (Friedman, Goldszmidt, and Wyner 1999), which
is not as granular as quantifying uncertainty in the effect
size.

4. Results

In the previous section we modified the decision procedure to
account for uncertainty. In Section 4.1 we illustrate this amended
procedure using example plays. Then, in Section 4.2 we consider
the extent to which the traditional decision procedure was over-
confident in its fourth-down recommendations.

4.1. Example Plays

Now, we discuss example plays. To compare decision recom-
mendations to the decisions that actual football coaches tend to
make, we model the probability that a coach chooses a decision
in {Go, FG, Punt} as a function of game-state. We detail the
specification of this baseline coach model in Appendix D and
include the model’s predictions in our decision figures.

Example play 1. First, recall example play 1 from Section 2.2
in which the Patriots had the ball against the Colts in Week
10 of 2023. In Figure 5 we knit uncertainty quantification into
decision making. Although the point estimate (the blue col-
umn in Figure 5(a)) suggests that Go provides a 1.1% gain
in win probability over FG, 44% of the bootstrapped models
view FG as better than Go (the orange column in Figure 5(a)),
reflecting substantial uncertainty in the optimal fourth-down
decision. Also, the 90% confidence interval is [−4%, 5%], and
the histogram of bootstrapped win probability gain estimates in
Figure 5(b) is centered near zero and has a large spread. These
suggest that Go could either be a good or a bad decision.

Example play 2. Next, recall example play 2 from Section 2.2
in which the Eagles had the ball against the 49ers in the 2023
NFC Championship game. We visualize fourth-down decision
recommendations in Figure 6. The pink dot in Figure 6(a)
lies in a moderately dark green region, indicating a moderate
estimated gain in win probability by going for it. Being far
from the decision boundary, however, does not imply it the best
decision with certainty. Also, it is not obvious how far from
the boundary is “far enough.” Hence, in Figure 6(b) we provide
an additional chart that illustrates uncertainty in the estimated
optimal decision. Here, the color intensity indicates the propor-
tion of bootstrapped models that make the estimated optimal
decision. Much of the figure consists of dark colors, specifically
dark green in the bottom-left and middle and dark red in the top-
right. For those combinations of yardline and yards to go, we are
confident in the estimated optimal decision. For example play 2
(the pink dot), boot% is high (dark green), so we are confident
that Go is the best decision. Other combinations of yardline and
yards to go feature lighter colors, reflecting higher uncertainty.
For those game-states, we are less confident in the estimated
optimal decision.

We include more examples of this fourth-down decision
procedure in Appendix E. We also include an interactive Shiny
App that visualizes the decision procedure for any game-state on
Github.6

4.2. Quantifying Overconfidence in Win Probability Point
Estimates

In Figure 7 we visualize the distributions of effect size and
uncertainty across all fourth-down plays from 2018 to 2022.
Effect size is the estimated gain in win probability and uncer-
tainty is proportional to bootstrap percentage. To facilitate eas-
ier communication to a non-technical football coach, we bin
decision confidence levels. We partition [50%, 100%] into three
equally spaced buckets and add [0%, 50%) to the lowest bucket:

6To run the Shiny app, download the Github repository at https://github.com/
snoopryan123/fourth_down and run 3_shiny/app.R.

https://github.com/snoopryan123/fourth_down
https://github.com/snoopryan123/fourth_down
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Figure 5. Decision charts for example play 1. Figure (a) shows the models’outputs, including the point estimate (blue column), WP gain confidence interval, boot% (orange
column), and other metrics. Figure (b) is the histogram of bootstrapped win probability gain estimates. The gray dashed line is zero and the blue solid line is the point
estimate.

Figure 6. Decision boundary charts for example play 2. Figure (a) visualizes the estimated optimal decision (color) according to effect size (color intensity, where darker
colors indicate larger values) as a function of yards to opponent endzone (x-axis) and yards to go (y-axis), holding the other game-state variables constant. The pink dot
represents the actual play’s yards to opponent endzone and yards to go. Figure (b) is similar except color intensity reflects bootstrap percentage.

confident (boot% ∈ [83%, 100%]), lean (boot% ∈ [67%, 83%)),
and uncertain (boot% ∈ [0%, 67%)).

We are confident in the vast majority of decisions that have an
effect size above 4%. Most decisions with an effect size under 1%
are uncertain, and decisions with an effect size between 1% and
4% are a healthy split between confident, lean, and uncertain.
Many plays (44%) have an effect size under 1% and most plays
(87%) have an effect size under 4%. So, many fourth-down plays
feature an effect size that is subject to considerable uncertainty.

In particular, we are confident in just 48% of all fourth-down
decisions from 2018 to 2022 and 27% of them are uncertain. This
analysis reflects substantial overconfidence in win probability
point estimates; far fewer fourth-down decisions are as obvious
as traditional analyses suggest.

Interestingly, we are confident in about 20% of decisions with
effect size under 1% and in about 50% of decisions with effect
size between 1% and 2%. Although decision confidence is corre-
lated with estimated gain in win probability, they are fundamen-



THE AMERICAN STATISTICIAN 9

Figure 7. The distribution of effect size, and uncertainty given effect size, across all
fourth-down plays from 2018 to 2022. The height of a bar reflects the proportion of
plays that lie in its associated effect size bin (x-axis). The color distribution within
a bar reflects the distribution of decision confidence (confident in green, lean in
yellow, and uncertain in red) among those plays.

Figure 8. NFL coach (y-axis) versus the proportion of confident fourth-down deci-
sions he made in agreement with our model from 2018 to 2022 (x-axis).

tally different: we can be confident in plays that provide small
edges. Over the course of a season, these edges can accumulate
into a large advantage that coaches should take advantage of.

Furthermore, a football analyst shouldn’t penalize a coach
for making a decision that has high uncertainty regardless of
the effect size because the estimated edge may be due to noise.
Accordingly, we should evaluate coaches only on plays for which
we are confident (and perhaps also plays in which we lean toward
a decision). In Figure 8 we rank coaches by the proportion of
fourth-down decisions they made in accordance with our model

from 2018 to 2022 among fourth-down plays we are confident in.
The top of this list has coaches like John Harbaugh from “ana-
lytics bent” organizations but also coaches who are considered
more traditional on fourth down such as Ron Rivera and Pat
Shurmur. While “analytics bent” coaches tend to follow fourth-
down recommendations from win probability point estimates,
which include recommendations on confident plays, some of the
more traditional coaches seem to have a good feel for obvious
fourth downs.

Despite overconfidence in win probability point estimates,
analysts have been largely correct that NFL coaches do not go
for it enough on fourth down. Across all fourth-down plays from
2018 to 2022 that we are confident in, the coach made the right
decision for 91% of plays where they should have kicked but just
49% of plays where they should have gone for it. Play calling in
the NFL is still far too conservative: coaches consistently make
wrong decisions, particularly when they should go for it.

5. Discussion

Win probability models are commonly used across sports ana-
lytics. Fourth-down decision making is a prominent example.
There has been little reflection on the high-variance nature
of win probability estimators and no substantial attempt to
quantify uncertainty in these models. In this study, we argue
it is imperative to knit uncertainty quantification into win
probability-based decision making. Using fourth-downs as our
case study, we in particular recommend a fourth-down decision
when we are confident it has higher win probability than all other
decisions. If we are not confident in a recommendation because
it is subject to substantial uncertainty, we should not penalize
a coach who doesn’t follow it. Similarly, we do not think it is
right for a football analyst to recommend an uncertain fourth-
down recommendation, regardless of the effect size. Despite
analysts’ overconfidence in win probability point estimates, after
accounting for uncertainty we still find that NFL coaches are too
conservative: they don’t go for it enough on fourth down. Addi-
tionally, as teams across the NFL have increased their propensity
to go for it on fourth down, the success rate hasn’t declined.7

Our analysis is not without limitations and there are many
avenues for future work. To begin, in this study, we used boot-
strapping to quantify uncertainty in win probability estimates.
Although our bootstrap procedure produces wide confidence
intervals, it underestimates uncertainty since it quantifies sam-
pling uncertainty but not model uncertainty. The former is
uncertainty resulting from fitting a model on a finite dataset
(“variance”) and the latter is uncertainty caused by our model
being wrong or biased (“bias”). Our models are subject to sev-
eral sources of model uncertainty. We made several simplyfing
assumptions in modeling fourth-down win probability, such
as swapping the expectation with first-down win probability.
Furthermore, “true” win probability is a function of unobserved
confounders. For example, the yards to go variable would ideally
be derived from tracking data and measured in inches, but the
publicly available version is integer-valued. Lopez (2020) shows
that, particularly at short distances (i.e., comparing fourth down

7https://medium.com/@dacr444/analyzing-4th-down-attempts-over-the-
last-24-seasons-8c0f99c538cb).

https://medium.com/@dacr444/analyzing-4th-down-attempts-over-the-last-24-seasons-8c0f99c538cb
https://medium.com/@dacr444/analyzing-4th-down-attempts-over-the-last-24-seasons-8c0f99c538cb
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and inches to fourth and 1), a more fine-grained yards to go vari-
able can produce substantially different forecasts. Another key
unobserved confounder is the play call that’s being considered
for a potential conversion attempt. For instance, on fourth and
1, the Eagles “tush push” play call has a much higher success
rate than the league-wide base rate.8 The play call can make
or break a conversion attempt, and not adjusting for it intro-
duces additional uncertainty into the analysis. Unfortunately, it
is not publicly available. A more elaborate analysis would capture
model uncertainty.

In this study, we found that statistical win probability models
produce uncertain estimates at many game-states. In future
work we suggest exploring probabilistic state-space models to
estimate win probability. As discussed in Section 2.4, probabilis-
tic models simplify the game of football into a series of tran-
sitions between game-states. Transition probabilities are esti-
mated from play-level data and win probability is calculated by
simulating games. The effective sample size (ESS) of transition
probability models is the number of plays because they are
fit from independent play-level observations. Some analysts in
industry have created proprietary probabilistic models, which
they believe are more accurate than statistical models due to
the larger ESS. But, state-space models have higher bias than
statistical models. Whereas both classes of models have simi-
lar levels of hidden bias (due to not adjusting for unobserved
confounders), state-space models have more model bias as they
make stronger simplifying assumptions. See Appendix F for a
further discussion of the difficulty of formulating probabilistic
state-space win probability models. We look forward to a public
facing exploration of those models in the future.

Finally, if teams follow our fourth-down recommendations,
their behavior will change and win probability will change
accordingly. Statistical win probability models that learn from
the game outcomes defining the recent history of football do
not account for this distribution shift. State-space models, on
the other hand, can account for these changes by altering the
probability that a team goes for in on fourth down as a function
of game-state. A more elaborate analysis would account for this
distribution shift.

Appendix A. Data Details

Appendix B. Estimating Player/Team Quality

Kicker quality. We define a kicker’s quality by a weighted mean of his
field goal probability added over all his previous kicks in his career. To
begin, we fit a simple kicker-agnostic field goal probability model P(0)

FG
using logistic regression as a function of yardline (specifically, a cubic
polynomial in yardline). Then, we define the field goal probability added
(FGPA) of the nth field goal by

FGPAn := I
(
nth field goal is made

)
−P(0)

FG (yardline of the nth field goal). (B1)

Now we define kicker quality using the Ravens’ kicker Justin Tucker for
concreteness. Index all of Tucker’s field goals by n. We define Tucker’s
kicker quality prior to field goal n ≥ 2 by a weighted mean of the field

8https://www.espn.com/nfl/story/_/id/41234531/philadelphia-eagles-tush-
push-jason-kelce

Table A1. Game-state variables relevant to estimating win probability that describe
the context at the start of a play.

Variable Variable description

win/loss 1 if the possession team wins the
game, else 0

game seconds remaining num. seconds remaining in the game
in {3600, . . ., 1}

score differential point differential between the
offensive and defensive team at the
start of this play

total score total points scored during this game
prior to this play

posteam spread pre-game Vegas point spread relative
to the possession team

total points line pre-game Vegas total points
over/under line

yards to opp. endzone (i.e.,
yardline)

num. yards to the opponent’s endzone
in {0, 1, . . ., 99, 100} (0 is touchdown
and 100 is safety)

yards to go (i.e., ydstogo) an integer, the number of yards an
offense has to gain to achieve a first
down or touchdown

down a number in {1, 2, 3, 4} denoting the
down of the play

posteam timeouts
remaining

num. timeouts in {3, 2, 1, 0} the
offensive team has

defteam timeouts
remaining

num. timeouts in {3, 2, 1, 0} the
defensive team has

receive 2h ko 1 if the possession team receives the
2nd half kickoff, else 0

home 1 if the offensive team is at home, else 0
era categorical variable grouping the year

into {1999 − 2005, 2006 −
2013, 2014 − 2017, 2018 − 2022}

roof categorical variable grouping the roof
of the stadium into
{closed, dome, open, outdoors}

game id unique identifier of this game
drive id unique identifier of this drive
posteam coach name of the coach of the possession

team

Figure B1. Kicker quality trajectories versus time for various kickers.

goal probability added in his previous kicks,

kqn :=
∑n−1

j=1 αn−1−j · FGPAj

γ + ∑n−1
j=1 αn−1−j , (B2)

and kq1 := 0. The hyperparameter γ stabilizes kq for low n, shrinking
kq toward 0 (i.e., shrinking toward an average kicker). In other words,
we impute γ synthetic field goals, each with an “average” FGPA outcome
of zero. We use γ = 96. The hyperparameter α is an exponential decay
weight, which upweights more recent kicks, allowing us to capture non-
stationarity in kicker quality over time. We use α = 0.985. For instance,

https://www.espn.com/nfl/story/_/id/41234531/philadelphia-eagles-tush-push-jason-kelce
https://www.espn.com/nfl/story/_/id/41234531/philadelphia-eagles-tush-push-jason-kelce
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Figure B2. (a) The career mean kicker quality (x-axis) of each kicker (y-axis) with over 100 field goal attempts in our dataset. (b) The career mean punter quality (x-axis) of
each punter (y-axis) with over 250 punts in our dataset.

a kick which occurred 46 kicks ago is weighted half as much as the
previous kick since 0.98546−1 ≈ 0.5. Also, a kick which occurred 153
kicks ago is weighted one-tenth as much as the previous kick since
0.985153−1 ≈ 0.1. Finally, we standardize kicker quality to have mean
zero and standard deviation 1.

In Figure B1 we visualize the kicker quality trajectories of a few
kickers across their careers. We see non-stationarity in kicker quality
over time. For example, notice Younghoe Koo’s sharp rise in 2020 (he
made the Pro Bowl that year) and Robbie Gould’s dip in 2019. In
Figure B2(a) we plot the career mean kicker quality of each kicker with
over 100 field goal attempts in our dataset. As expected, Justin Tucker
has by far the highest kicker quality.

Punter quality. We define punter quality in a similar fashion as kicker
quality. In particular, we define a punter’s quality by a weighted mean
of his punt yards over expected over all his previous punts in his career.
To begin, we fit a simple punter-agnostic expected next yardline after
punting model E(0)

Punt using linear regression as a function of yardline
(specifically, a cubic polynomial in yardline). Then, we define the punt
yards over expected (PYOE) of the nth punt by

PYOEn := actual yardline after the nth punt

−E
(0)
Punt(yardline prior to the nth punt). (B3)

Now we define punter quality using Rams’ punter Johnny Hekker for
concreteness. Index all of Hekker’s punts by n. We define Hekker’s
punter quality prior to punt n ≥ 2 by a weighted mean of the punt
yards over expected in his previous kicks,

pqn :=
∑n−1

j=1 αn−1−j · PYOEj

γ + ∑n−1
j=1 αn−1−j , (B4)

and pq1 := 0. The hyperparameters γ and α play the same role as in
kicker quality. We use γ = 150 and α = 0.99. Finally, we standardize
punter quality to have mean zero and standard deviation 1.

Figure B3. Punter quality trajectories versus time for various punters.

In Figure B3 we visualize the punter quality trajectories of a few
punters across their careers. We see non-stationarity in punter quality
over time. For example, notice Pat McAfee’s steady rise across his mid
and later years (he made the Pro Bowl in 2014 and 2016) and Jake
Bailey’s decline in 2022. In Figure B2(b) we plot the career mean punter
quality of each punter with over 250 punts in our dataset. As expected,
Johnny Hekker has the highest punter quality.

Difference in offensive and defensive quality. We create a measure
of how much better the offensive team’s offensive quality is than the
defensive team’s defensive quality using information from betting mar-
kets. We use Vegas’ pre-game point spread relative to the offensive team
(denoted PS) and the total points over/under line (denoted TP). In
particular, our measure is (TP − PS)/2, standardized to have mean zero
and standard deviation 1.

We derive this expression as follows. Denote the offensive quality of
the offensive team by oqot, the defensive quality of the defensive team
by dqdt, the offensive quality of the defensive team by oqdt, and the
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defensive quality of the offensive team by dqot. These variables are not
observable, and we are interested in the differences oqot − dqdt and
oqdt − dqot. The point spread is a measure of how much better the
offensive team’s offense’s edge is over the opposing defense relative to
the opposing team’s edge. A reasonable model is

PS = −((oqot − dqdt) − (oqdt − dqot)), (B5)

recalling that, by convention, negative point spreads indicate larger
edges. The total points line is a measure of the combined strenth of both
offense’s edges. A reasonable model is

TP = (oqot − dqdt) + (oqdt − dqot) + TP, (B6)

where TP denotes the average total points line if neither offense has an
edge. From these two equations, we derive oqot−dqdt = (TP−PS)/2
and oqdt − dqot = (TP + PS)/2, ignoring an additive constant.

Appendix C. Tuning the Number of Bootstrapped
Datasets

We use boot% to measure uncertainty in the estimated optimal deci-
sion, but we cannot necessarily rely on a non-technical football coach
to fully process how boot% maps to the strength of a recommendation.
To facilitate easier communication to a coach, we bin decision recom-
mendations into three buckets: confident (boot% ∈ [83%, 100%]), lean
(boot% ∈ [67%, 83%)), and uncertain (boot% ∈ [0%, 67%)). Since
we ultimately bucket decision recommendations into these three bins
(see Section 4.2), we want the number of bootstrapped models B to be
large enough to stably categorize decisions into one of these three bins.
We also want B to be as small as possible in order to quickly evaluate
a fourth-down recommendation during a football game. Hence, we
conduct a stability analysis to choose B.

Across M = 100 draws of B bootstrapped decision models in each,
we categorize each observed fourth-down play from 2018 to 2022 into
one of the three bins. Let i index all the observed fourth-down plays
from 2018 to 2022, let m ∈ {1, . . ., M} index the draw of the bootstrap,
and in each draw of the bootstrap we generate B fourth-down decision
models. Given boot%(B)

im , the boot% of the estimated optimal decision
for play i in draw m of the bootstrap, we calculate

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

pconfident, (B)
i = 1

M
∑M

m=1 I
(

boot%(B)
im ∈ [83%, 100%]

)
,

plean, (B)
i = 1

M
∑M

m=1 I
(

boot%(B)
im ∈ [67%, 83%)

)
,

puncertain, (B)
i = 1

M
∑M

m=1 I
(

boot%(B)
im ∈ [0%, 67%)

)
,

p(B)
i = max{pconfident, (B)

i , plean, (B)
i , puncertain, (B)

i }.

(C1)

For each category, pcategory, (B)

i is the proportion of the M bootstrap
draws that play i is put in that category. For our procedure with B
bootstrapped models to be stable, we want pcategory, (B)

i to be close to
1 for each category, which means that a play’s categorization is not
dependent on the randomness inherent in generating B bootstrapped
models. Hence, we want p(B)

i , the maximum pcategory, (B)

i across the
three categories, to be close to 1. Hence, we want the mean across all
plays p(B) = 1

n
∑n

i=1 p(B)
i to be close to 1. In Figure C1 we see that for

B = 101, p(B) = 0.9 and the vast majority of plays i have p(B)
i = 1.

Some plays have p(B)
i lower than 1 since they lie near the border of two

categories. We believe p(B) = 0.9 is sufficiently large and hence use
B = 101 in our fourth-down decision procedure.

Figure C1. This is a histogram of {p(B)
i }i . The blue line is the mean. Since most of

the values equal 1 and the mean is high enough, B = 101 is large enough.

Appendix D. Baseline Coaches’ Decision Model

To compare our decision-making procedure to the decisions that actual
football coaches tend to make, we model the probability that a coach
chooses a decision in {Go, FG, Punt} as a function of game-state. We
use XGBoost to fit these coach probabilities. XGBoost works well here
because we have 94,786 fourth-down plays in our full dataset of plays
since 1999, and each play is a reasonably approximate independent
observation of a coach’s decision. In particular, we fit these coach
probabilities as a function of yards to opponent endzone, yards to
go, game seconds remaining, score differential, point spread, and era
(1999–2001, 2002–2005, 2006–2013, 2014–2017, and 2018-present). In
Figure D1 we visualize these coach decision models, and the results
make intuitive sense. For the most part, coaches punt deep in their own
territory and kick field goals near the opponent’s endzone, except for
with one and sometimes two yards to go. Also, at the end of the game,
coaches’ decision-making changes depending on the number of points
they need to score to win the game.

In Figure D2 we visualize the variable importance (via gain) of
our XGBoost model. Interestingly, point spread has an extremely small
impact on coaches’ fourth-down decisions. We find, however, that point
spread should impact fourth-down decision making. For instance, in
certain game-states, it is advantageous for the favorites to be more
aggressive (e.g., late in close games).

Appendix E. Additional Example Plays

Example play 3. In Figure E1 we visualize the decision procedure for
a fourth-down play in which the Bears had the ball against the Jets
in Week 12 of 2022. FG provides an edge over Go according to the
WP point estimate (+4.2% WP). But, the 90% confidence interval of
the estimated gain in win probability by attempting a field goal is
[−2%, 5%], indicating that FG could either be a good or a bad decision.
Also, 40% of the bootstrapped models say Go is better. In other words,
we do not have enough data to be confident in the win probability point
estimates, and we don’t know the optimal fourth-down decision at this
game-state. Further, in the bottom right plot, notice how most of the
colors are light. This indicates that the optimal decision is uncertain at
most other combinations of yardline and yards to go at this game-state.

Example play 4. In Figure E2 we visualize the decision procedure for
a fourth-down play in which the Ravens had the ball against the Jets in
Week 1 of 2022. Punt provides a slight edge over Go according to the
WP point estimate (+1.3% WP). But most of the bootstrapped models
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Figure D1. Visualizing our model of the typical coach’s fourth-down decision as a function of yards to opponent endzone and yards to go, for various values of time
remaining and score differential. Green, yellow, and red indicate that Go, FG, and Punt is the most likely decision, respectively. The color intensity reflects the likelihood that
a coach makes that decision.

say Punt is better and the 90% confidence interval of the estimated gain
in win probability by punting is [0%, 3%], which is positive. So, even
if the edge is small, we are confident in this edge and recommend that
the Ravens should Punt. Further, in the bottom right plot, notice how
most of the colors are dark outside of a large white boundary region.
This indicates that we have higher certainty in the estimated optimal
decision at this game-state.

Example play 5. In Figure E3 we visualize the decision procedure for
an infamous fourth-down play in which the Raiders had the ball against
the Rams in Week 14 of 2022. Go provides a strong edge over Punt
according to the WP point estimate (+2.9% WP). Further, many of the
bootstrapped models say Go is better and the 90% confidence interval of
the estimated gain in win probability by going for it is [0%, 5%], which
is positive. Thus, we recommend that the Raiders should Go.9

Appendix F. The Difficulty of Formulating a
Probabilistic State-Space Win Probability
Model

Proprietors of probabilistic models believe that introducing bias in
order to reduce variance improves the overall accuracy of the resulting
win probability estimator. Nevertheless, these models are subject to
their own set of issues, and we believe they aren’t as low-variance as
some analysts claim. Properly modeling the distribution of the out-
come of a play is nontrivial. In contrast to the simple binary win/loss
outcome of statistical win probability models, the outcome variable
of a transition probability model is the next game-state, which could

9In real life, the Raiders punted. Then, Rams quarterback Baker Mayfield
countered with a successful 98-yard drive to win the game.

Figure D2. Variable importance (gain) for the typical coach’s decision probability
model.

include a change in yardline, score, time, or timeouts. This distribution
is quite complex: there is a spike at gaining 0 yards for incompletions, a
spike for a touchdown, spikes for penalties, and other smooth possibly
multimodal distributions for the outcome of run or pass plays, each
of which change as a function of team quality and other confounders
(Biro and Walker 2023a, 2023b). Typical transition probability models
are riddled with selection bias, as a coach generally chooses play calls
that work for his specific players and don’t generalize to an “average”
team. Further, uncertainty in these transition probabilities may, after
being properly propagated through a state-space model, result in just
as much (if not more) uncertainty in estimated win probability than
estimates from statistical models. Additionally, one must take great care
to carefully encode all the subtle rules of football into her model, and
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Figure E1. Decision charts for example play 3.



THE AMERICAN STATISTICIAN 15

Figure E2. Decision charts for example play 4.
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Figure E3. Decision charts for example play 5.

one needs sufficient computing power to simulate enough games to
estimate win probability with enough granularity. We look forward to a
public facing exploration of probabilistic win probability models in the
future.
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