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We introduce a three-step framework to determine, on a per-pitch basis, whether batters in
Major League Baseball should swing at a pitch. Unlike traditional plate discipline metrics,
which implicitly assume that all batters should always swing (resp. take) pitches inside
(resp. outside) the strike zone, our approach explicitly accounts not only for the players and
umpires involved but also in-game contextual information like the number of outs, the count,
baserunners, and score. Specifically, we first fit flexible Bayesian nonparametric models to
estimate (i) the probability that the pitch is called a strike if the batter takes the pitch;
(ii) the probability that the batter makes contact if he swings; and (iii) the number of
runs the batting team is expected to score following each pitch outcome (e.g. swing and
miss, take a called strike, etc.). We then combine these intermediate estimates to determine
whether swinging increases the batting team’s run expectancy. Our approach enables natural
uncertainty propagation so that we can not only determine the optimal swing/take decision
but also quantify our confidence in that decision. We illustrate our framework using a case
study of pitches faced by Mike Trout in 2019.

1 Introduction

1.1 Motivating example

At the top of the seventh inning of the September 5, 2019 game between the Oakland

Athletics and the Los Angeles Angels, Angels batter Kevan Smith faced Athletics pitcher

A.J. Puk with the Angels leading 5 runs to 1 On an 0-2 pitch with no outs and no runners

on-base, Puk threw a fastball that just missed the lower right-hand corner of the strike zone

(see Figure 1). Smith decided to swing at the pitch. Did Smith make the correct decision?
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By swinging, Smith risked missing the pitch, picking up a strike, and losing an out, thereby

putting his team at a disadvantage. And even if he had made contact, he risked flying or

grounding out, which would similarly disadvantage his team. At the same time, however,

by swinging, Smith had a chance of getting on base or even scoring a home run. On the

other hand, had Smith not swung and had instead taken the pitch, because the pitch just

missed the inside edge of the strike zone, the umpire may have correctly called the pitch

a ball (which would advantage Smith’s team) or mistakenly called a strike (which would

disadvantage Smith’s team).

Figure 1: Kevan Smith swings at a fastball thrown just outside the lower right-hand corner
of the strike zone.

As it turns out, Smith hit a home run on this pitch. So at least retrospectively, it would

seem like the decision to swing was good. But was Smith simply lucky? Or should we expect

him to hit home runs consistently off of similar pitches in similar game situations? And how

sure should we be about these expectations?

We provide quantitative answers to these questions using a Bayesian modeling framework

to assess batter’s decision making — or plate discipline — prior to observing the outcome

of each pitch. In the case of Smith in Figure 1, we find that there was a 12.3% chance (90%

credible interval [5.8%, 16.7%]) that the umpire would call the pitch a strike. Although taking

the pitch would likely have benefitted Smith’s team, Smith had about an equal chance of

making contact if he swung (83.1%, 90% credible interval [80.6%, 85.3%]). In fact, we find
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that by swinging on similar pitches, Smith increases the number of runs the Angels are

expected to score in the remainder of the half-inning only 61.4% of the time and only by

about 0.01 runs on average (90% credible interval [−0.04, 0.08]). Ultimately, our analysis

concludes that while Smith’s decision to swing on the pitch was not especially risky, it was

unlikely to substantially benefit his team, in terms of the number of expected runs the team

would score in the rest of the inning.

Traditional plate discipline metrics compare the proportion of pitches batters swing at that

are outside and inside the strike zone (Slowinski, 2010a). In this way, these metrics reward

batters for avoiding taken strikes based on the implicit assumption that pitches thrown

outside (resp. inside) the strike zone are always called balls (resp. strikes). Of course, umpires

do not adhere strictly to the official strike zone when making ball/strike decisions. Though

they often rely on adaptive heuristics and prior experience to make calls (Green and Daniels,

2022), umpires can also be influenced by the framing ability of individual catchers (Marchi,

2011; Lindbergh, 2013; Deshpande and Wyner, 2017); player age or ability (Kim and King,

2014; Mills, 2014); their previous calls (Chen et al., 2016); and the fact that their calls are

reviewed by the league (Mills, 2017). As a result, traditional plate discipline metrics may

systematically penalize batters who swing at “frameable” pitches that just barely miss the

strike zone but are likely to be called strikes. These metrics additionally fail to account

for the fact that some pitches are easier to hit than others. At least intuitively, we might

regard a batter who only takes hard-to-hit pitches as more disciplined than a batter who

consistently takes easy-to-hit pitches. Further, traditional plate discipline metrics entirely

ignore the many contextual and situational factors that can influence a batter’s decision to

swing. For instance, batters may be more aggressive on pitches thrown with two strikes to

avoid striking out while looking. Finally, existing plate discipline metrics do not quantify

the uncertainty in their findings.

1.2 Our contributions

We introduce a three-step approach to determine optimal swing decisions, assess batter

decision-making on a per-pitch basis, and quantify our uncertainty about both. In the first

step, we fit flexible Bayesian nonparametric models that enable us to estimate, for any single

pitch, (i) the probability that a batter makes contact; (ii) the probability that the umpire

calls a strike; and (iii) the average number of runs that the batting team is expected to score

in the remaining half-inning as functions of the pitch location, players and umpires involved,
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and game-state information like the count, inning, and baserunners. Then, in the second

step, we combine these estimates using the law of total expectation to compute the expected

number of runs the batting team is expected to score if the batter swings or takes the pitch.

Finally, we use these quantities to determine the optimal swing/take decision. By fitting

Bayesian models in the first step, we are able to propagate uncertainty about the actual

outcomes of a particular pitch through to our assessment of the batter’s decision making in

a natural and computationally efficient manner.

Our framework involves fitting three component models, each of which may be of independent

interest. First, elaborating on work begun in Deshpande and Wyner (2017), we develop a

Bayesian model of called strike probability that “borrows statistical strength” across umpires

and players through flexible partial pooling of data. We demonstrate that this model, which

is based on Bayesian additive regression trees (BART; Chipman et al., 2010) and accounts

not only for pitch location but also player and umpire identities and game-state information,

outperforms parametric competitors based on generalized additive models that account only

for location. We develop a similar model for the probability that a batter makes contact on

a pitch. Finally, we developed a BART-based run expectancy model, which we call BARTxR,

to predict the number of runs a team is expected to score following each pitch outcome as a

function of in-game contextual variables like the count, number of outs, score differential, and

baserunners. At a high-level BARTxR generalizes existing run expectancy measures like RE24

(Weinberg, 2014), which computes the average number of runs scored within bins defined by

the number of outs and configuration of baserunners. Using a comprehensive cross-validation

study, we demonstrate that BARTxR’s predictions are more accurate than those of RE24 and

several variants thereof.

The remainder of this paper is organized as follows. We introduce the data and notation

used in Section 2.1 before describing our three-step framework for assessing batter decision-

making in Section 2.2. Then, we detail our modeling approach in Section 3. In Section 4,

we perform a case study of a single batter, Mike Trout, highlighting the types of plate

discipline assessments that can be done using our framework. We conclude in Section 5 with

a discussion of several extensions of our modeling framework.
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2 Data and background

2.1 Data and notation

Our analysis uses pitch-by-pitch tracking data from Major League Baseball’s Statcast database.

For each pitch, we observe game-state information (e.g. count, outs, score, baserunners),

pitch personnel (e.g pitcher, batter, fielders, umpire), pitch outcome (e.g. hit, ball, strike),

and other game actions (e.g. steal, substitution). Additionally, we observe the horizontal

and vertical coordinates of each pitch’s trajectory as it crosses the front edge of home plate.

We scraped these data using the baseballr package (version 1.2.0; Petti and Gilani, 2022).

We limited our analysis to pitches thrown during regular season games. We fit our strike

probability model using all 380,654 pitches that were taken during the 2019 season and we

fit our contact probability model using all 341,725 pitches at which batters swung in the

2019 season. We fit our expected runs model (BARTxR) using all 2,853,912 pitches thrown

between the 2015–2018. Observe that these three datasets are disjoint.

We use G to denote information about the state of the game when the pitch was thrown

including the count, outs, baserunners, score differential, inning, and whether it is the top or

bottom of the inning. We similarly use P to record the personnel involved in a pitch including

the identifies of the batter, catcher, pitcher, and home plate umpire. We additionally include

indicators of the batter and pitcher handedness in P as well as quantitive measures of the

batter and pitcher quality, which we describe below. Finally, we denote the location of the

pitch (i.e. the plate x and plate z coordinates in Statcast) as its crosses the front edge of

home plate with L.

Let swing = 1 if the batter swings and swing = 0 if the batter takes the pitch. If the batter

decides to swing, let contact = 1 if the batter makes contact with the pitch and contact = 0

if the batter misses. If the batter does not swing, let strike = 1 if the umpire calls a strike

and strike = 0 if the umpire calls a ball. Let outcome = (contact, strike) be a vector

denoting the outcome of the pitch where contact = NA if swing = 0 and strike = NA if

swing = 1. Let gstate denote the game-state category the game moves to after the outcome

of the pitch is observed. gstate encodes similar information as outcome but treats a called

strike and a miss as the same game-state.

We quantify batter and pitcher quality using a running estimate of their weighted on based

average (wOBA; Slowinski, 2010b). For each game, we set these quality measures to the

be their mean wOBA, averaged over all of their previous games in the season. For batters,
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higher wOBA represents higher quality while for pitches, lower wOBA represents higher

quality. Note that for the first game, we set each player’s quality measure to be the league

average wOBA from the previous season. Our choice to track player quality using a running

wOBA estimates follows the example of Brill et al. (2022).

2.2 Determining the optimal decision

To motivate our three-step framework, consider a pitch at the moment just before the batter

decides to swing. Suppose that we knew the number of runs the batter’s team would score

in the remainder of the half-inning if (a) the batter swings or (b) the batter does not swing.

Based on that knowledge, the optimal decision is intuitively the one that leads to scoring

more runs. Of course, we are uncertain about these run values at the moment just before

the batter swings or takes the pitch. This is because there is uncertainty in the ultimate

outcome: if he swings, the batter might make contact or miss and if he takes the pitch, the

umpire may call it a ball or a strike. Because of this uncertainty, we propose to determine

the optimal swinging decision using the expected number of runs the batter’s team will

subsequently score, which can be computed by averaging over the uncertainty about these

outcomes.

Figure 2 illustrates the four possible outcomes following the batter’s decision. Computing the

expected number of runs scored after a swing requires knowledge of (i) the expected number

of runs scored after making contact; (ii) the expected number of runs scored after missing;

and (iii) the probability of making contact. Similarly, computing the expected number of

runs scored after a take requires knowledge of (i) the probability of a called strike; (ii) the

expected number of runs scored after a called ball; and (iii) the expected number of runs

scored after a called strike.

Formally, let R be the number of runs the batter’s team scores following the pitch. Given

the game-state information G, personnel P , and location L of a pitch, we need to compute

E[R|G,P ,L, swing] for both values of swing in order to determine the optimal decision for

that pitch. Observe that we can decompose the expected runs following a swing or take as

E[R|G,P ,L, swing] =
∑

outcome

P(outcome|G,P ,L, swing)E[R|G,P ,L, swing, outcome]. (1)

To determine the optimal decision, we introduce EVdiff as the difference in expected runs
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Figure 2: Framework for modeling the outcomes of a pitch.

following a swing and following a take. Formally, we define

EVdiff = E[R|G,P ,L, swing = 1]− E[R|G,P ,L, swing = 0]. (2)

The sign of EVdiff determines the optimal decision xR optimal, which is given by

xR optimal =

swing = 1, if EVdiff > 0

swing = 0, if EVdiff ≤ 0.

Determining the optimal decision for a pitch and subsequently assessing a batter’s decision-

making requires knowledge of E[R|G,P ,L, swing, outcome] and P(outcome|G,P ,L, swing).

Although we do not know these quantities exactly, we can estimate them using our collected

data. We will discuss each estimation problem in Section 3.
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2.3 Related work and background on BART

Existing plate discipline metrics. Initial plate discipline metrics (e.g., Slowinski, 2010a)

characterized how often batters swing at pitches thrown outside (O-Swing%) and inside

(Z-Swing%) the strike zone as well as how often batters made contact with these pitches

(O-Contact% and Z-Contact%, respectively). Intuitively, disciplined batters have high Z-Swing%

and low O-Swing%. Unfortunately, such metrics implicitly assume that all pitches thrown

inside (resp. outside) the strike zone are equally desirable to hit (resp. not hit) which can give

a false impression of a batter’s plate discipline. For example, Kevan Smith’s decision in Fig-

ure 1 would have a negative impact on his O-Swing% even though he had a high probability

of making contact. By treating every pitch equally, they fail to account for important con-

textual factors that impact a batter’s decision to swing such as strike probability (see, e.g.,

Arthur, 2014b; Green and Daniels, 2014; Mills, 2014). As a result, they may systematically

over-penalize batters who see many pitches near the edges of the strike zone.

To overcome these limitations, recent studies have focused on directly modeling the batter’s

actual decision-making process. For instance, Arthur (2014a) first estimates the probability

that each pitch is called a strike and then uses those estimates to predict whether a batter

will swing at a pitch. They characterize disciplined batters as those whose swing probabil-

ities increase most in response to small increases in strike probability. Unfortunately, this

characterization does not consider the downstream impact swing decisions have on metrics

like run expectancy or win probability. Towards this end, Vock and Vock (2018) used a

causal inference framework to predict how a batter’s batting average, on base percentage,

and slugging percentage would change under different counterfactual decision-making strate-

gies. At a high-level, their framework answers the question “What would happen if batter

A made swing/take decisions like batter B?” While interesting and informative, the models

in Arthur (2014a) and Vock and Vock (2018) make no attempt to determine which decision

a batter ought to make. In the context of Figure 1, these models try to predict which path

a batter will follow. Our approach, in contrast, attempts to determine which path would

most benefit the batter’s team.

Independently of but concurrently to this work, Mould and Anderson (2022a,b) introduced

the Expected Additional runs Gained by Looking/swinging Estimate (EAGLE) model to

quantify plate discipline. Like us, they also used a tree-structured framework to determine

the optimal swing/take decision and fit intermediate strike probability and contact proba-

bility models using flexible, non-parametric procedures. We pause here to highlight some
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differences between their model and ours. Superficially, our approach differs from theirs in

terms of the predictor variables included in these intermediate probability models as well

as the specific model fitting procedure used (BART in our case versus XGBoost in their’s).

Like us, EAGLE combines predictions from their intermediate probability models with a

run expectancy model to compute the expected number of runs a team will score following

a swing or take. EAGLE uses a variant of RE24 that accounts for baserunners, count, and

outs1 followed by an ad hoc correction for batter quality. Our approach, on the other hand,

uses predictions from a much higher-resolution regression-based run expectancy model.

The most substantive difference between our proposal and EAGLE’s lies in uncertainty

quantification. Simply put, EAGLE makes no attempt to propagate uncertainties about

the intermediately-estimated strike or contact probabilities and run expectancies to their

evaluation of batter decision making. In sharp contrast, our Bayesian approach makes such

uncertainty quantification and propagation extremely easy (see Section 3.1). We argue that

such uncertainty quantification is of paramount importance for evaluating decision-making.

Basically, we do not wish to penalize batters for making suboptimal decisions when there is

considerable uncertainty about what the optimal decision is.

BART. Initially introduced in the context of nonparametric regression, BART has emerged

as an extremely popular “off-the-shelf” modeling tool because it often delivers extremely

accurate predictions with reasonably well-calibrated uncertainty estimates without requiring

users to (a) pre-specify the parametric form of the regression function and (b) tune any hyper-

parameters. At a high-level, BART works by approximating unknown functions with sums

of binary regression trees and excels at capturing complicated nonlinearities and complex,

high-order interaction effects. We believe a priori that both strike and contact probabilities

are highly non-linear and may depend on complicated interactions between players, umpires,

pitch location, and in-game contextual variables like the count or baserunner configuration.

Insofar as such nonlinearities and interactions are difficult to specify correctly in a paramet-

ric fashion, BART is an especially attractive modeling choice as it does not require us to

pre-specify such a parametric form. We fit our three BART models using the flexBART

package, which permits more flexible modeling with categorical predictors like batter identity

that can take on many values. See Deshpande (2022) for more details.

1We include this model in our cross-validation study in Section 4.1 as RE288
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3 Modeling and uncertainty propagation

3.1 Uncertainty propagation

Recall that computing EVdiff requires first estimating each term in the summand in Equa-

tion (1). By taking a Bayesian approach, we can quantify how uncertainties about these esti-

mates propagate to uncertainty about EVdiff and xR optimal in a relatively straightforward

fashion. Specifically, because they involve non-overlapping subsets of pitches, we can fit in-

dependent Bayesian models to obtain posterior samples of E[R|G,P ,L, swing, outcome] and

P(outcome|G,P ,L, swing) for each outcome. By suitably multiplying and summing these

samples according to Equation (1), we obtain posterior samples of E[R|G,P ,L, swing], from

which we can immediately compute posterior samples of EVdiff and xR optimal. Given

posterior samples of EVdiff, we can use the proportion of samples with positive EVdiff as

an estimated probability that swinging is the optimal decision. We can further quantify how

much better (or worse) swinging at the pitch is than taking the pitch using the posterior

mean and 90% credible interval (formed using the 5% and 90% sample quantiles) of EVdiff.

3.2 Modeling assumptions and fitting

Expected Runs. We need to compute run expectancy following the four pitch outcomes

shown in Figure 2. That is, we need to compute E[R|G,P ,L, swing, outcome]. A natural

approach begins by first partitioning our dataset of 2,853,912 pitches into bins formed by

every combination of variables in G, P , L, swing, and outcome and then computing the

average number of runs scored subsequently in each bin. Despite its intuitive appeal, such a

binning and averaging procedure is impractical without further simplifying assumptions due

to the sheer size of the number of bins. To wit, in 2019 there were a total of 988 batters, 93

umpires, and 113 catchers. Accounting for all combinations of just these three aspects of P
requires over 10 million bins which is greater than the number of pitches in our dataset.

To simplify this estimation, we assume that given the game context, swing decision, and

outcome, personnel and pitch location have no predictive effect on expected runs. Formally,

we assume that E[R|G,P ,L, swing, outcome] = E[R|G, swing, outcome]. While this may

seem like a rather strong assumption, we note that it is actually weaker than the assumptions

underpinning other popular run expectancy models. For example, RE24 assumes that, given

the number of outs and the configuration of baserunners, R is conditionally independent

of all other contextual factors, personnel, and pitch location. That is, RE24 assumes that
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E[R|G,P ,L, swing, outcome] = E[R|outs, baserunners].

Under our assumption, we must now compute E[R|G, swing, outcome]. While binning and

averaging is now feasible, we instead fit a single BART model to estimate the expected

runs following a strike, ball, contact, and miss. Fitting a single model to estimate all four

quantities allows us to “borrow strength” from related observations with different outcomes.

Such partial pooling may be preferable to separately modeling each outcome since different

outcomes can lead to the same game state (e.g. swinging and miss vs. called strike). To model

expected runs, we regress R on G, swing, contact, strike, outcome, and gstate using pitch

data from the 2015 to 2019 MLB seasons.

Event Probabilities. We fit BART models with probit links to estimate the strike prob-

ability and contact probabilities as functions of G, P , and L. We fit these models to data

from the 2019 MLB season.

4 Results

Code to download and pre-process our data, fit the constituent models, and compute the pos-

terior distributions of EVdiff and xR optimal is available at https://github.com/ryanyee3/

plate discipline code.

4.1 Model validation

We performed several cross-validation studies to understand the predictive accuracy of our

BART models for strike probability, contact probability, and run expectancy.

Strike and contact probabilities. We compared our BART models for strike and contact

probabilities to two competitors, a model based on generalized additive models (GAMs) and

the empirical probabilities of each event using 10-fold cross-validation. We used the mgcv

package (version 1.8-41; Wood, 2023) to fit GAMs to predict strike and contact probabilities

as a smooth function of location with a binomial link. We evaluated each model in terms of

mean-squared error (i.e. the Brier score), log-loss, and misclassification error.

Unsurprisingly, both BART and the GAM substantially outperformed the empirical proba-

bilities on both tasks. We further found that BART achieved slightly smaller out-of-sample

log-loss than the GAM for strike probabilities (0.16 vs 0.17) and contact probabilities (0.46

vs. 0.47). That the two models achieved similar predictive performance, despite the fact
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that our BART models utilized many more predictors than the GAM, suggests that location

is, by far, the main driver of strike and contact probabilities. A table with the full results of

each fold and each loss metric can be found in Section 6.

Expected runs. We conducted a comprehensive comparison of BARTxR to 14 candidate run

expectancy models. We utilized a similar framework to RE24 to fit each candidate model

by binning and averaging the number of runs following different game situations (Weinberg,

2014). We consider every combination of count (12 possibilities), outs (3 possibilities), and

baserunners (8 possibilities) as predictors in candidate models for a total of seven unique sets

of predictors. For each set of predictors we fit two types of models REx and BayesREx where

x denotes the number of predictors. REx models are fit in the same way as RE24. BayesREx

models are hierarchical Bayesian models of the following form

β̄ ∼ N (0, τ 2
β̄)

τβ ∼ half-t7

σ2 ∼ Inverse Gamma

(
ν

2
,
νλ

2

)
βg(i) ∼ N (β̄, τ 2

β)

R̃i ∼ N (βg(i), σ
2)

(3)

where i indexes the pitch, g(i) indexes the bin (i.e., combination of count, out, and/or

baserunners), half-t7 denotes a t-distribution with 7 degrees of freedom truncated to the

positive axis, and R̃ is R standardized to have mean zero and variance one. We set ν and

λ so that the prior probability on the event σ < 1 is about 90%. Our decision to specify

the model in Equation (3) on the standardized scale and our choices of ν and λ mirror the

choices made in default implementations of BART. We complete our prior specification with

the weakly informative choice τ 2
β̄

= 100. Compared to REx, which estimates run expectancy

in each bin independently, BayesREx “borrows strength” across bins.

Figure 3 shows the mean-squared error results of 10-fold cross-validation on each model.

We find REx and BayesREx models perform similarly for each combination of predictors.

This is perhaps unsurprising given the large number of pitches; basically, the conditional

posterior distribution of each βg(i) given β, σ2, and τβ is sharply concentrated around the

average values of the R̃i’s in the bin. We find that the models which account for outs and

baserunners perform best. BARTxR outperforms all other models in both training and testing

samples (average RMSE, BARTxR: 0.95, RE288: 0.96, BayesRE288: 0.96).
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Figure 3: Out-of-sample root mean-squared error for BARTxR, seven REx models, and seven
BayesREx models across 10 training/testing splits.

4.2 Batter evaluation case study

We now illustrate the type of plate discipline analysis facilitated by our modeling efforts

with a case study about Mike Trout in the 2019 MLB season. For each pitch Trout faced

in 2019, we generated samples of EVdiff and determined the xR optimal decision based on

the posterior mean of EVdiff. We quantified our uncertainty by computing the xR optimal

decision for each individual sample; that is, we computed the proportion of samples in which

the xR optimal decision is to swing. Figure 4 shows the results of these calculations for every

pitch faced by Trout in the 2019 broken down by the actual decision and the xR optimal

decision. In Figure 4a, the darker the shading, the greater the difference in the posterior

means of expected runs from swinging and the expected runs from taking. In Figure 4b, the

darker the shading, the more posterior certainty we have in the xR optimal decision.

In Figure 4a and Figure 4b, the large number of pitches in panels (a) and (d) reveal that

Trout’s actual decision very often matched our model’s xR optimal decision. Moreover,

these decision tended to agree with the conventional wisdom that batters should swing at

pitches inside the strike zone and take pitches outside the strike zone. In panels (a) and

(d) of the figures, we find, for instance, that Trout tended not to swing at pitches thrown

outside the strike zone and rarely took pitches inside the zone. The dark shading of pitches

13



(a) (b)

Figure 4: Pitches faced by Mike Trout in the 2019 MLB season where he took (left) and
swung (right) and the xR optimal decision is to take (top) and swing (bottom). Pitches in (a)
are shaded based on EVdiff and pitches in (b) are shaded based on P(xR optimal = swing).
The darker the shading, the larger the EVdiff (a) and our certainty that the xR optimal

decision is to swing (b). All plots are from the perspective of the home plate umpire.

outside the strike zone in panel (a) illustrate our model’s high degree of certainty that the

xR optimal decision is to take the pitch. Similarly, the dark shading of pitches inside the

strike zone in panel (d) illustrate our model’s certainty that the xR optimal decision is to

swing.

Perhaps more interesting are those pitches where our model’s xR optimal decision deviated

from the conventional wisdom and Trout’s actual decision-making (panels (b) and (c) in

Figure 4a and Figure 4b). In panel (b), for instance, we see that Trout swung at many

pitches inside the strike zone for which our model determined the xR optimal decision was

to take. As suggested by the relatively light shading of these pitches, we found on further

inspection that our model was very uncertain about the xR optimal decision. In fact, the

posterior distributions of EVdiff for these pitches tended to be nearly symmetric and tightly

concentrated around zero. Because of the uncertainty in the xR optimal decision and rel-
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atively small magnitude of EVdiff for these pitches, we would not classify Trout’s decision

to swing at these pitches as bad decisions per se.

In panel (c), however, we find that Trout took several pitches that passed inside the strike

zone for which our model determined, with relatively high certainty (as evidenced by the

dark shading), that the xR optimal decision was to swing. For these pitches, the posterior

distributions of EVdiff were largely concentrated on positive values. By taking these pitches,

our model suggests that Trout cost his team in terms of expected runs.

Of additional interest are the low-and-away pitches in panel (c) of Figure 4b where our model

is very confident that the xR optimal decision is to swing. We found that the posterior mean

EVdiff for these pitches is close to zero, suggesting that the cost of making a sub-optimal

decision on these pitches is very small. Nevertheless, it is interesting that our model is so

confident that the xR optimal decision is to swing on these pitches thrown well outside the

strike zone, when it is similarly confident that the xR optimal decision is to take pitches

thrown in similar locations in panels (a) and (b) of Figure 4b. We speculate that the

difference is due, at least in part, to differences in the game contexts in which these pitches

were thrown.

To probe this possibility, we visualized all pitches faced by Trout broken down by the number

of outs and the number of baserunners in Figure 5. Pitches are colored in Figure 5 based

on the posterior probability that the xR optimal decision is to swing. We see that the

low-and-away pitches where the xR optimal decision is to swing (pitches of interest) occur

when there are two outs and few baserunners while the low-and-away pitches where the

xR optimal decision is to take occur when there are no outs. Such a finding is, we argue,

intuitive, because the expected runs from a positive outcome will be similar to the expected

runs from a negative outcome when there are two outs and few baserunners.

Finally, while we have focused on Trout in this paper, we can conduct such analyses for any

batter using our model results. We have created an interactive Shiny app (version 1.7.2;

Chang et al., 2022) that performs such visual analysis for all batters who faced at least 1,000

pitches in the 2019 MLB season. The app is available at https://ryanyee3.shinyapps.io/

batter evaluation app/.
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Figure 5: Pitches faced by Mike Trout in the 2019 MLB season where his swing decision
conflicts with the xR optimal decision. Pitches are shaded based on the proportion of
samples where the expected runs from swinging is greater than the expected runs from
taking.

4.3 Summary metrics

We can complement our visual analysis using several aggregate metrics. For instance, we can

compute the proportion of pitches where the batter actually makes the xR optimal decision.

To account for our uncertainty in the xR optimal decision, we can calculate this proportion

for every posterior sample of xR optimal, and compute a credible interval for this metric.

We find that the average batter made the xR optimal decision 69.4% of the time in the

2019 MLB season. For reference, based on the traditional heuristic that a disciplined swing

decision is to swing at pitches inside the strike zone and take pitches outside the strike zone,

batters made the disciplined decision 68.4% of the time in the 2019 MLB season. We found
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that Jonathan Luplow had the highest proportion of xR optimal swing decisions (76.8%,

90% credible interval: [46.1%, 88.7%]) while Jorge Alfaro had the lowest proportion of

xR optimal swing decisions (61.4%, 90% credible interval: [37.7%, 83.2%]). These numbers

closely align with traditional plate discipline metrics that credit Luplow and Alfaro with

making the disciplined decision 76.4% and 60.7% of the time, respectively.

We can also measure the total impact a batter’s decisions have on expected runs over an

entire season by taking the difference in expected runs between the decision the batter made

and the alternative decision and summing over every pitch a batter faces. In terms of the

plots in Figure 4, let
∑

p EVdiff be the sum of EVdiff of all the pitches shown in panel p.

Then the expected runs added over an entire season could be computed as

(
∑
d

EVdiff−
∑
c

EVdiff)− (
∑
a

EVdiff−
∑
b

EVdiff).

Figure 6 shows a histogram of the posterior mean of expected runs added for all batters

who faced at least 1000 pitches in the 2019 season. We find the difference between the best

and worst batters according to this metric is not large — only about 0.1 expected runs. We

further find that there is considerable overlap in the 90% credible intervals of the expected

runs added (see Figure 8). For instance, we estimate the top batter, Jordan Luplow, on

average adds 0.08 expected runs per pitch due to his decision-making with a 90% credible

interval of [-0.06, 0.21] while the worst batter, Javier Baez, adds 0.03 expected runs per pitch

on average with a 90% credible interval of [-0.13, 0.18].

While informative, the expected runs added metric does face some limitations. We argue

that if a batter faces many low-leverage pitches (i.e. pitches where |EVdiff| is close to zero)

will have fewer opportunities to pick up added runs than batter’s facing many high-leverage

pitches (i.e. pitches where |EVdiff| is large). To account for this, we can calculate runs lost

as the minimum of 0 and the runs added from a pitch. To motivate this metric, we argue

that when a batter faces a low-leverage pitch, it does not matter what decision he makes

since it may be unclear what the best decision is. For example, in Figure 4 panel (b) there

are many pitches inside the strike zone that Trout swings at that, while the xR optimal

decision is to take, there is still considerable uncertainty in the xR optimal decision. Since

the most a batter can be punished on a given pitch is the expected runs lost by not making

the xR optimal decision, on low-leverage pitches the batter will either not be penalized or

be penalized by a small amount. When a batter faces a high-leverage pitch, the xR optimal
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decision should be obvious; and, under our framework, we expect a player with good plate

discipline to make the optimal decision, so a batter that does not make the xR optimal

decision on these pitches will be severely punished. In terms of the plots in Figure 4, runs

lost is calculated as ∑
c

EVdiff−
∑
b

EVdiff.

Results of expected runs lost are similar to the results of expected runs added: the absolute

differences between the best and worst batters are small (see Figure 6) with considerable

overlap in credible intervals (see ??). We estimate the top batter, Andrew McCutchen, has

an average loss of 0.03 expected runs per pitch with a 90% credible interval of [0.01, 0.09]

while the worst batter, Jorge Alfaro, lost 0.07 expected runs per pitch on average with a

90% credible interval of [0.01, 0.20].

For all three of these metrics, we find that there are a few batters that do much better

than everyone else and a few that much worse and the majority are somewhere in-between.

Figure 6 shows the distribution of these metrics for batters that faced at least 1000 pitches

in the 2019 MLB season.

Figure 6: Distributions of posterior means of batters who faced at least 1000 pitches in the
2019 MLB season for each summary metric.

While it is tempting to use these metrics to compare the plate discipline of different batters,

note that these metrics are confounded by the location of pitches a batter faces, so they are

not necessarily directly comparable across batters. We will return to this point in Section 5.
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5 Discussion

We developed a three-step framework for estimating the optimal swing/take decision of

batters in Major League Baseball. In the first step of our framework, we estimate, for a

given pitch, (i) the probability the umpire will call a strike; (ii) the probability a batter

will make contact; and (iii) the expected number of runs the batting team will score in the

remainder of the inning after a ball, strike, contact, and miss. Then, we combine these

estimates to calculate the expected runs following a swing and a take decision. Finally, we

determine the xR optimal decision to be the one that leads to more expected runs. We

adopt a Bayesian approach which allows us to propagate uncertainty from each intermediate

estimate to our evaluation of the xR optimal decision.

Our findings have several implications for Major League Baseball teams. First, we can

determine those batters who consistently make xR optimal swing decisions, which can aid

in player evaluation. We can also identify pitch locations where a batter consistently makes

suboptimal swing decisions. Batters can use this information to make adjustments to their

decision-making, while pitchers can use this information to target locations where a batter

is likely to make a decision that costs his team runs. Finally, we can identify locations

where pitches are likely to lead to a significant increase in expected runs (i.e. locations with

high EVdiff). Pitchers can use this information to avoid these locations to minimize the

opportunities for the batting team to score.

We found that across the leagues, batters made the xR optimal decision 69.4% of the time

according to our model, which aligns with the findings of other plate discipline studies.

Critically, we should ask ourselves why are our results so similar to the simpler traditional

plate discipline metrics. One explanation is that, despite their somewhat heavy-handed

assumptions (e.g. one should swing at every pitch in the strike zone and take every pitch

outside the zone), traditional metrics offer a reasonably accurate approximation of our more

fine-grained model.

Like umpires, batters are not robots: just as umpires do not strictly adhere to the rulebook

definition of the strike zone, batters almost certainly consider more than just expected runs

when making swing decisions. The fact that batters deviated from the xR optimal decision

about 30% of the time suggests that batters do not always consider expected runs when

making swing decisions. For example, a player chasing a home run record (e.g., Aaron Judge

at the end of the 2022 season) may make swing decisions to maximize expected home runs as
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opposed to expected runs. While these decisions are not xR optimal, they might be optimal

when viewed through the lens of expected home runs.

5.1 Limitations and future work

We presented an analysis of plate discipline that asserts the “disciplined” swing decision is

the one that leads to a greater number of expected runs. While we believe our assertion is

reasonable, an honest argument could be made that this is an incorrect characterization of

a “disciplined” swing decision. In such cases, our modular framework gives us the flexibility

to use any other objective to evaluate batters. For example, we could replace R in each

branch of Figure 2 with another team (e.g., win probability) or individual (e.g. home runs,

wOBA, OPS) outcome and following the same strategy: estimate intermediate probability

and conditional expectations, compute the expected outcome following a swing and following

a take, and determine the optimal decision.

While we used BART to fit the three models in the first step of our framework, other choices

are possible. Indeed, we selected BART for its ease-of-use: we did not have to manually pre-

specify the functional forms of the called strike and contact probabilities and run expectancy,

which we suspected depend on complicated non-linearities and interactions. Although our

BART-based models slightly outperformed parametric alternatives, these differences in out-

of-sample predictive power were not especially large. For instance, we found that our BART

model of called strike and contact probabilities, which accounted for location, game state,

and pitch personnel, achieved very similar predictive performance as a generalized additive

model that only accounted for location. Such a finding, to us, indicates that pitch location

is, by far, the main driver of strike and contact probabilities, with other predictors like outs

or count or player identifies contributing little additional predictive power. We also found

that the difference in out-of-sample RMSE between our BART-based run expectancy model,

BARTxR, and the best-performing alternative based on binning and averaging was about 0.01

runs. While this is a small difference on a per-pitch basis, these differences can magnify over

the course of an entire season.

More substantively, we only consider two possible outcomes following a swing decision, a

miss or contact. We could extend our framework to account for more post-swing outcomes

like miss, foul, out, single, double, triple, and home run in one of two ways. First, we

could replace our binary contact probability model with Murray (2021)’s multinomial logistic

BART model. In the context of Figure 2, this would involve replacing the contact branch
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with several branches. Alternatively, we could augment our existing framework with a further

model these outcomes conditional on making contact. That is, we could add additional child

branches to the contact branch of Figure 2, one for each potential outcome following contact.

We note that the developers of EAGLE pursued the first strategy. We suspect, however, that

the second approach would lead to less uncertainty about the xR optimal decision as the

overall accuracy of our contact/miss model is better than the reported accuracy of EAGLE’s

multi-outcome model.

Beyond a pitch-by-pitch visual assessment, we introduced three aggregate metrics that

tracked the proportion of times batters made the xR optimal decision and the expected

number of runs added or lost due to plate discipline across an entire season. Although it

is tempting to compare these metrics across players, these metrics are confounded by pitch

location and the context in which players see different pitches. Simply put, because the distri-

bution of pitches one batter sees may different from the distribution seen by another batter,

it is difficult to directly compare their aggregated plate discipline metrics. To overcome such

confounding, it is tempting to first marginalize EVdiff over L and G before computing in

a manner similar to Jensen et al. (2009)’s spatially aggregate fielding evaluation. While

such spatially and contextually aggregated plate discipline metrics are intuitively appealing,

computing them introduces considerable computational challenges. Basically, to marginalize

over L and G, we would have to make predictions for every combination of batter and pitch

in our dataset. We leave efficient computation of such marginal measures to future work.

Relatedly, our strike and contact probability models both condition on the location of the

pitch as it crosses the front edge of home plate. Insofar as batters decide to swing or take the

pitch before it reaches home plate, one could reasonably argue that such location information

is unavailable to the batter. Rather than omit pitch location from our strike and contact

probability models, it would be interesting to fit a more realistic model that conditions on

the location of the pitch at a point between the pitcher’s mound and home plate.
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6 Appendix

6.1 Cross-validation results

Tables 1 reports the out-of-sample mean square error (i.e. Brier score), log-loss, and mis-

classification rate for our BART model, a generalized additive model that only accounts for

pitch location, and the empirical probabilities for each fold in our cross-validation experi-

ment. Table 2 is analogous but for the contact probabilities. Observe that our BART models

outperforms the GAMs on every fold.

Table 1: Out-of-sample predictive errors for computing strike probabilities on each cross-
validation fold.

MSE Log-loss Misclassification rate
Fold BART GAM EP BART GAM EP BART GAM EP

1 0.050 0.052 0.214 0.163 0.168 0.619 0.071 0.074 0.310
2 0.050 0.052 0.214 0.161 0.166 0.620 0.069 0.073 0.311
3 0.049 0.051 0.216 0.159 0.165 0.622 0.069 0.072 0.314
4 0.050 0.052 0.216 0.164 0.168 0.624 0.072 0.073 0.316
5 0.051 0.053 0.215 0.163 0.168 0.622 0.072 0.074 0.314
6 0.050 0.052 0.214 0.162 0.167 0.619 0.070 0.074 0.310
7 0.050 0.052 0.216 0.163 0.166 0.623 0.071 0.074 0.315
8 0.050 0.052 0.213 0.161 0.166 0.617 0.070 0.073 0.308
9 0.050 0.053 0.215 0.163 0.168 0.622 0.070 0.074 0.312
10 0.050 0.052 0.214 0.162 0.165 0.619 0.070 0.073 0.310
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Table 2: Out-of-sample predictive errors for computing contact probabilities on each cross-
validation fold.

RMSE Log-loss Misclassification rate
Fold BART GAM EP BART GAM EP BART GAM EP

1 0.149 0.152 0.182 0.467 0.476 0.549 0.200 0.210 0.239
2 0.149 0.151 0.182 0.466 0.474 0.550 0.201 0.204 0.239
3 0.146 0.149 0.180 0.460 0.468 0.545 0.197 0.200 0.235
4 0.147 0.151 0.181 0.462 0.472 0.547 0.199 0.202 0.236
5 0.147 0.150 0.181 0.463 0.471 0.548 0.198 0.202 0.238
6 0.150 0.154 0.184 0.470 0.481 0.554 0.204 0.210 0.242
7 0.149 0.152 0.182 0.468 0.476 0.550 0.202 0.204 0.239
8 0.149 0.151 0.182 0.467 0.474 0.549 0.201 0.204 0.239
9 0.147 0.151 0.180 0.463 0.473 0.546 0.199 0.202 0.236
10 0.147 0.150 0.181 0.463 0.471 0.547 0.200 0.203 0.237

6.2 Additional figures

Figure 7 shows boxplots of the proportion of pitches where batter’s made the xR optimal

decision for each posterior sample for the top 10 and bottom 10 batters who faced at least

1000 pitches in the 2019 MLB regular season. There is considerable uncertainty in the

proportion of pitches where batter’s made the xR optimal decision, and the overlap between

batters demonstrates the difficulty in differentiating batters.

Figure 8 shows boxplots of the runs added metric for each posterior sample for the top 10

and bottom 10 batters who faced at least 1000 pitches in the 2019 MLB regular season.

The boxplots show considerable uncertainty in these estimates, and overlap in distributions

between batters demonstrates the difficulty in differentiating batters based on this metric.

Figure 9 shows boxplots of the runs lost metric for each posterior sample for the top 10 and

bottom 10 batters who faced at least 1000 pitches in the 2019 MLB regular season. There

is considerable uncertainty in these estimates, and overlap in distributions between batters

demonstrates the difficulty in differentiating batters based on this metric.
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Figure 7: Boxplots of posterior samples of the proportion of pitches where the batter made
the xR optimal decision for the top 10 and bottom 10 batters who faced at least 1000 pitches
in the 2019 MLB regular season.

Figure 8: Boxplots of posterior samples of the runs added metric for the top 10 and bottom
10 batters who faced at least 1000 pitches in the 2019 MLB regular season.
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Figure 9: Boxplots of posterior samples of the runs lost metric for the top 10 and bottom
10 batters who faced at least 1000 pitches in the 2019 MLB regular season.
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