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Abstract

In American football, a pass rush is an attempt by the defensive team to disrupt
the offense and prevent the quarterback (QB) from completing a pass. Existing
metrics for assessing pass rush performance are either discrete-time quantities or
based on subjective judgment. Using player tracking data, we propose STRAIN, a
novel metric for evaluating pass rushers in the National Football League (NFL) at the
continuous-time within-play level. Inspired by the concept of strain rate in materials
science, STRAIN is a simple and interpretable means for measuring defensive pressure
in football. It is a directly-observed statistic as a function of two features: the distance
between the pass rusher and QB, and the rate at which this distance is being reduced.
Our metric possesses great predictability of pressure and stability over time. We also
fit a multilevel model for STRAIN to understand the defensive pressure contribution
of every pass rusher at the play-level. We apply our approach to NFL data and
present results for the first eight weeks of the 2021 regular season. In particular, we
provide comparisons of STRAIN for different defensive positions and play outcomes,
and rankings of the NFL’s best pass rushers according to our metric.

Keywords: American football, defensive linemen, multilevel model, player tracking data
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1 Introduction

In recent years, tracking data have replaced traditional box-score statistics and play-by-

play data as the state of the art in sports analytics. Numerous sports are collecting and

releasing data on player and ball locations on the playing surface over the course of a game.

This multiresolution spatiotemporal source of data has provided exceptional opportunities

for researchers to perform advanced studies at a more granular level to deepen our under-

standing of different sports. For complete surveys on how tracking data have transformed

sports analytics, see Macdonald (2020), Baumer et al. (2023), and Kovalchik (2023).

In an attempt to foster analytics and innovate the game, the National Football League

(NFL) introduced their player tracking system known as Next Gen Stats in 2016 (NFL

Football Operations, 2023b). Next Gen Stats uses radio frequency identification (RFID)

chips placed in players’ shoulder pads (and in the ball) to collect data at a rate of 10 frames

per second. The data capture real-time on-field information such as locations, speeds,

and accelerations of all 22 players (and the football). While these data were initially only

available for teams, media, and vendors, in December 2018 the NFL launched the inaugural

edition of their annual Big Data Bowl competition (NFL Football Operations, 2023a).

The first Big Data Bowl led to several contributions largely focused on offensive perfor-

mance evaluation. For example, one group of finalists introduced an approach for modeling

the hypothetical completion probability of a pass aiding in the evaluation of quarterback

(QB) decision making (Deshpande and Evans, 2020). The winners of the inaugural Big

Data Bowl focused on identifying receiver routes via clustering techniques (Chu et al., 2020)

and convolutional neural networks (Sterken, 2019). Along with the competition entries, the

public release of NGS data allowed researchers to tackle a variety of other problems such as

revisiting fourth down decision making (Lopez, 2020), annotating pass coverage with Gaus-

sian mixture models (Dutta et al., 2020), and introducing a continuous-time framework to

estimate within-play value (Yurko et al., 2020). Since its inception, the Big Data Bowl

has chosen a different theme each year leading to new insight about evaluating different

positions such as running backs, defensive backs, and special teams. The 2023 edition of

the NFL Big Data Bowl asked participants to evaluate linemen on passing plays (Howard

et al., 2022).

Our focus of this manuscript is specifically on measuring the performance of defensive

2



linemen in the NFL. There are two main types of defensive linemen in American football:

defensive tackles and defensive ends. Typically, these positions are located within the inte-

rior of the line and along the edges, respectively; see Figure 1 (top) for example formation

with defensive tackles and defensive ends. The primary purpose of both positions is to rush

the QB on passing plays, with defensive ends displaying superiority in observed pass rush-

ing ability (Eager and Chahrouri, 2018). Additionally, within defensive tackles there are

nose tackles who directly line up across from the ball at the line of scrimmage; see Figure 1

(bottom) for example defensive scheme with a nose tackle. NFL teams often employ either

one nose tackle or two defensive tackles on the interior with defensive ends along either

side of the defensive line. Besides defensive lineman, other positions may attempt to rush

the QB on blitzing plays such as outside linebackers, interior linebackers, and potentially

members of the secondary (cornerbacks, free safeties, and strong safeties) whose primary

role is pass coverage. Note that apart from the formations shown in Figure 1, defensive

linemen can have the flexibility to line up differently. For example, a defensive end, de-

pending on the opposing matchup, may not necessarily be positioned toward the outside

of the line of scrimmage.

In this work, using data made available in the Big Data Bowl 2023, we present a

novel approach to measure the performance of pass rushers. Relative to other aspects of

American football, such as quarterback evaluation (Burke, 2019; Reyers and Swartz, 2021),

the literature on evaluating pass rushers is scarce. Below, we provide a brief overview of

existing pass rush metrics.

1.1 Previous Pass Rush Metrics

Table 1 gives a summary of existing football metrics for pass rush. We now highlight what

these quantities describe as well as their limitations.

Perhaps the most commonly-known statistics for evaluating defensive linemen on pass

rush plays are sacks, hits, and hurries, which are discretely observed at the play-level.

Officially tracked by the NFL since 1982, a sack is recorded when a defender tackles the

QB behind the line of scrimmage before the QB releases a pass. Other traditional box

score statistics such as hits and hurries are collected by various outlets. A hit is a collision

between a defender and the opposing team’s quarterback after the quarterback makes

a throw. A hurry represents an instance when a defender successfully disrupts without
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DE DT DT DE

OLB MLB OLB

CB S S CB

DE NT DE

OLB ILB ILB OLB

CB S S CB

3−4 Defense

4−3 Defense

Figure 1: Two common defensive alignments in football: 4-3 defense (top) and 3-4 defense

(bottom). The dashed line represents the line of scrimmage separating the defense and

offense. Defensive tackles (DT), defensive ends (DE), and nose tackles (NT) primarily

rush the QB on passing plays and attempt to stop the ball carrier as quickly as possible on

running plays. Outside linebackers (OLB) and inside linebackers (ILB) usually play directly

behind the defensive line and are involved in defending against passing and rushing plays.

Cornerbacks (CB) and safeties (S) generally involve in defending against passing plays.

necessarily making direct contact with the QB and forces the QB to throw the football

earlier than expected. These are all simple binary measures of pass rush outcome for

any given play. However, for plays that do not result in the aforementioned outcomes (in

particular, sack), there are still many intermediate defensive actions on the field within the

play that are valuable and can be considered positive achievements.

In addition, the sum of sacks, hits, and hurries is often defined as pressures. This is

better than the individual counts to some extent, but suffers from problems of subjectivity

(e.g., whether there is an actual hurry or not). Pro Football Focus (PFF) defines a met-

ric called pass-rush productivity, which is a minor modification from the aforementioned

pressures metric (see Table 1). In particular, pass-rush productivity gives twice as much

weight to a sack relative to hurries and hits, which is a small upgrade to pressures. How-

ever, the choice of weights is ad-hoc and still only considers binary outcomes, similar to
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Table 1: A summary of previously-existing pass rush metrics.

Metric Description

Sacks A defender tackles the QB behind the line of scrimmage be-

fore a QB throw

Hits A defender tackles the QB behind the line of scrimmage after

a QB throw

Hurries A defender pressures the QB behind the line of scrimmage

forcing the QB to throw the ball sooner than intended

Pressures Hurries + Hits + Sacks

Pass-Rush Productivity
(Hurries + Hits)/2 + Sacks

Pass Rush Snaps

Time In Pocket Time (in seconds) between ball snap and throw or pocket

collapse for a QB

NGS Get Off Average time (in seconds) required for a defender to cross the

line of scrimmage after the ball snap

Pass Rush Win Rate Rate at which pass rusher beats pass block within 2.5 seconds

after ball snap

the shortcomings of previous metrics.

More recently proposed metrics such as time in pocket, NGS get off (Hermsmeyer,

2021), and pass rush win rate (Burke, 2018) are substantial improvements over the less

sophisticated counting statistics, but nevertheless are still imperfect. Time in pocket refers

to how long a QB can operate within the protected space behind the offensive line, known

as the pocket. However, this measure is highly context-dependent, as it can be influenced

by a number of factors such as the defensive scheme or type of passing route. NGS get

off is an aggregated statistic, illustrating how quickly a defender can get past the line of

scrimmage after the snap on average. Pass rush win rate is created using player tracking

data, which is at a more granular level than previous measures. It demonstrates whether

a pass rusher is able to beat their blocking matchup before a fixed time from the snap (2.5

seconds as chosen by ESPN). However, this depends on the rather arbitrary time threshold

used to define a pass rush win. Besides, once a cutoff is chosen, pass rush win rate converts

continuous data to a win-loss indicator, becoming dichotomous like most of the metrics

discussed above.
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1.2 Previous Research on Football Linemen

The peer-reviewed literature on measuring the performance of football linemen (either

offensive or defensive) is scant. Alamar and Weinstein-Gould (2008) find an association

between pass completion rate and successful pass blocking by offensive linemen. The data

for this study are collected for the first three weeks of the 2007 NFL season, manually

recording whether a lineman holds a block and the time it took for the quarterback to throw

the football. Alamar and Goldner (2011) later follow up by using manually-tracked data

for the 2010 season to estimate lineman performance for different team-positions instead

of individual defenders (e.g., Chicago Bears’ left tackle, Pittsburgh Steelers’ center, etc.).

This work uses survival analysis to model time in pocket and completion percentage for

quarterbacks before proposing a measure for linemen’s contribution to their team’s passing

in terms of yards gained.

Wolfson et al. (2017) comment on the two aforementioned articles that “[a]lthough

these are exciting preliminary steps, there is still a long way to go before we can provide

a comprehensive appraisal of the achievements of an individual lineman.” The challenge

here is fundamental, since there were not enough public data at the time to develop any

meaningful metric for linemen in football, as also noted by Alamar and Weinstein-Gould

(2008). However, with the granularity of player tracking data, we have access to data not

only for the linemen but also for every player on the field. This provides us with a great

opportunity to study and gain better insights into linemen performance in football.

1.3 Our Contribution

In this paper, we focus on the evaluation of defensive linemen in football. We propose

STRAIN, a metric for measuring pass rush effectiveness, inspired by the concept of strain

rate in materials science. Our statistic gives a continuous measure of pressure for every

pass rusher on the football field over the course of an entire play. This allows for the

assessment of pass rush success even on plays that do not result in an observed outcome

like a sack, hit, or hurry. We view this as a major step forward for accurately evaluating

defensive linemen performance. We also demonstrate that STRAIN is a stable quantity over

time and predictive of defensive pressure. Additionally, we consider a multilevel model to

estimate every pass rusher’s contribution to the average STRAIN in a play while controlling
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for player positions, team, and various play-level information. We note that although our

focus in this paper is on pass rushers, our approach can be extended to the evaluation of

pass blockers in American football.

The remainder of this manuscript is outlined as follows. We first describe the player

tracking data provided by the Big Data Bowl 2023 in Section 2. We then introduce the

mathematical motivation and definition of our measure STRAIN, followed by our modeling

approach in Section 3. Next, we present applications of STRAIN and study different

statistical properties of the metric in Section 4. We close with our discussion of future

directions related to this work in Section 5.

2 Data

In the forthcoming analysis, we rely on the data from the NFL Big Data Bowl 2023 provided

by the NFL Next Gen Stats tracking system. The data corresponds to 8,557 passing plays

across 122 games in the first eight weeks of the 2021 NFL regular season. For each play,

we have information on the on-field location, speed, angle, direction, and orientation of

each player on the field and the football at a rate of 10 Hz (i.e., 10 measurements per

second), along with event annotations for each frame such as ball snap, pass forward, and

quarterback sack, to name a few.

For our investigation, we consider only the frames between the ball snap and when

a pass forward or quarterback sack is recorded for each play. We also remove all plays

with multiple quarterbacks on the field, since we need a uniquely defined quarterback to

compute our metric. After preprocessing, there are 251,060 unique frames corresponding

to moments of time from the start of the play at snap until the moment the quarterback

either throws the pass or is sacked.

Table 2 displays a tracking data example for a play from the 2021 NFL regular season

week six matchup between the Las Vegas Raiders and Denver Broncos, which ends with

Broncos quarterback Teddy Bridgewater getting sacked by Raiders defensive end Maxx

Crosby. In addition, Figure 2 presents the locations of every Las Vegas (in black) and

Denver (in orange) player on the field from this play at 1, 2, 3 and 4 seconds after the ball

snap, with Maxx Crosby highlighted in blue.

Along with the tracking information, the Big Data Bowl 2023 includes scouting data
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Table 2: Example of tracking data for a play during the Las Vegas Raiders versus Denver

Broncos NFL game on October 17, 2021. The data shown here are for Raiders defensive

end Maxx Crosby, and the frames included are between the ball snap and when the sack

by Crosby is recorded.

frameId x y s a dis o dir event

7 67.68 29.89 0.34 1.57 0.04 124.86 88.21 ball snap

8 67.76 29.89 0.69 2.13 0.08 124.07 89.59 None
...

...
...

...
...

...
...

...
...

50 73.67 25.06 4.19 2.62 0.42 134.21 125.26 qb sack

30 40 50 40 30

30 40 50 40 30

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

1s since snap

30 40 50 40 30

30 40 50 40 30

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

2s since snap

30 40 50 40 30

30 40 50 40 30

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

3s since snap

30 40 50 40 30

30 40 50 40 30

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

4s since snap

Figure 2: A display of the player tracking data for a play during the Las Vegas Raiders

(defense, in black) versus Denver Broncos (offense, in orange) NFL game on October 17,

2021. Raiders defensive end Maxx Crosby is highlighted in blue. Snapshots are captured

at 1, 2, 3, and 4 seconds after the ball snap.

8



0

2000

4000

6000

1 2 3 4 5 6 7 8
Number of pass rushers

C
ou

nt

Figure 3: Distribution of the number of pass rushers on passing plays.

provided by Pro Football Focus (PFF). This contains manually-collected player-level in-

formation, such as the player’s role (e.g., whether they are a pass rusher and pass blocker)

and credited events (e.g., player is credited with hitting the QB on the play). In this

manuscript, we use the PFF data to identify 36,362 unique pass rush attempts by play-

ers designated in the “pass rush” role across all plays. For context, Figure 3 displays the

distribution of the number of observed pass rushers involved in a play, ranging from 1 to

8 with 4 pass rushers (i.e., 4-man rush formation) as the most common value. We also

leverage this scouting data to count how many hits, hurries, and sacks each pass rusher

is credited with across the span of observed data. Additionally, we use the PFF player

roles to identify the blocking matchup for each pass rusher in order to adjust for opponent

strength, as discussed in Section 3.

3 Methods

3.1 Motivation and Definition of STRAIN

In materials science, strain (Callister and Rethwisch, 2018) is the deformation of a material

from stress, showing the change in a material’s length relative to its original length. For-

mally, let L(t) be the distance between any given two points of interest within a material at

time t, and L0 be the initial distance between those two points. The strain for a material

at time t is defined as

ε(t) =
L(t)− L0

L0

.
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Notice that this measure is unitless due to being a ratio of two quantities having the same

unit.

Accordingly, the strain rate of a material measures the change in its deformation with

respect to time. Mathematically, the strain rate of a material can be expressed as the

derivative of its strain. That is,

ε′(t) =
dε

dt
=

v(t)

L0

,

where v(t) is the velocity at which the two points of interest within the material are moving

away from or toward each other. Whereas strain has no units, the strain rate is measured

in inverse of time, usually inverse second.

Motivated by its scientific definition, we draw a delightful analogy between strain rate

and pass rushing in football. Just as strain rate is a measure of deformation in materials

science, a pass rusher’s efforts involve the application of deformation against the offensive

line, with the ultimate goal of breaking through the protection to reach the quarterback.

The players can be viewed as “particles” in some material and the defensive “particles”

are attempting to exert pressure on the pocket with the aim of compressing and collapsing

this pocket around the quarterback.

In order to apply strain rate to measure NFL pass rusher effectiveness, we make mod-

ifications to how this concept is traditionally defined. Let (xijt, yijt) be the (x, y) location

on the field of pass rusher j = 1, · · · , J at frame t = 1, · · · , Ti for play i = 1, · · · , n; and

(xQB
it , yQB

it ) be the (x, y) location of the quarterback at frame t during play i.

• The distance between pass rusher j and the quarterback at frame t during play i is

sij(t) =

√
(xijt − xQB

it )2 + (yijt − yQB
it )2.

• The velocity at which pass rusher j is moving toward the quarterback at frame t

during play i is

vij(t) = s′ij(t) =
dsij(t)

dt
.

• The STRAIN for pass rusher j at frame t during play i is

STRAINij(t) =
−vij(t)

sij(t)
.

Note that to distinguish our metric from strain and strain rate in materials science, we

write it in capital letters (STRAIN) for the remainder of this manuscript.
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Recall that based on its materials science property, an increase in strain rate is associated

with an increase in the distance between two points. In the American football setting, the

two points of interest are the pass rusher and the quarterback, and we expect our metric to

increase as the distance between the pass rusher and the quarterback decreases. Thus, the

negative sign in the numerator of our formula effectively accounts for this. Additionally,

rather than keeping the initial distance (L0 as previously denoted) between two points

constant over time, we update the initial position to be the player locations at the beginning

of each frame. This gives us the STRAIN for each frame throughout a play.

Since we only observe the distance and velocity quantities discretely in increments of

10 frames/second, a point estimate for our proposed metric STRAIN for pass rusher j at

frame t during play i is

̂STRAINij(t) =
−

sij(t)− sij(t− 1)

0.1
sij(t)

.

Notice that this quantity increases in two ways: 1) the rate at which the rusher is moving

toward the quarterback increases, and 2) the distance between the rusher and the quarter-

back decreases. Both of these are indications of an effective pass rush attempt. Finally,

our statistic STRAIN is measured in inverse second, similar to strain rate. Note that the

reciprocal of our metric (1/STRAIN) has an interesting and straightforward interpretation:

the amount of time required for the rusher to get to the quarterback at the current location

and rate at any given time t.

Moreover, since we observe STRAIN at every tenth of a second within each play, we

can then compute the average STRAIN across all frames played for every pass rusher.

Formally, the average STRAIN, denoted by STRAIN, for pass rusher j involved in nj total

plays across
∑

i∈Zj
Ti total frames, where Zj is the set of all plays with pass rusher j’s

involvement, is

STRAINj =
1∑

i∈Zj
Ti

∑
i∈Zj

Ti∑
t=1

̂STRAINij(t).

This can be helpful for player evaluation, as we determine the most effective pass rushers

based on their average STRAIN values in Section 4.3. We also use average STRAIN to

assess different statistical properties of our metric in Section 4.4.
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3.2 Multilevel Model for Play-Level STRAIN

In addition to the average STRAIN over all frames played, we can also calculate pass rusher

j’s observed average STRAIN on a single play i consisting of Ti total frames,

STRAINij =
1

Ti

Ti∑
t=1

̂STRAINij(t).

While this aggregated measure is a simple first step for pass rush evaluation, the observed

average STRAIN on a single play is likely due to numerous factors. Besides the pass rusher’s

ability, there is variability in the opposing strength of pass blockers across plays a pass

rusher is involved, both at the individual and team levels. Thus, we need to appropriately

divide the credit of an observed average STRAIN across the different players and team

involved, amongst other factors.

To this end, we fit a multilevel model to evaluate pass rushers’ impact on the average

STRAIN observed in a play, while accounting for their team on defense, the opposing team

on offense, and their assigned pass blocker. We identify the pass blocker linked with the

pass rusher of interest using the scouting data provided by PFF as mentioned in Section 2.

Since there can be multiple blockers matching up with a rusher, for simplicity, we consider

the nearest blocker positioned to the pass rusher at the start of the play. We use random

intercepts for the two player groups: pass rushers as R and nearest pass blockers as B, as

well as for the two team groups: defense D and offense O. We also account for attributes

about pass rusher j in play i through the covariate vector xij, and estimate their respective

coefficients β as fixed effects. Our model for the average STRAIN by pass rusher j on play

i is as follows.

STRAINij ∼ N(Rj[i] +Bb[ij] +Dd[i] +Oo[i] + xijβ, σ
2), for i = 1, . . . , n plays

Rj ∼ N(µR, σ
2
R), for j = 1, · · · , # of pass rushers,

Bb ∼ N(µB, σ
2
B), for b = 1, · · · , # of pass blockers,

Dd ∼ N(µD, σ
2
D), for d = 1, · · · , # of defensive teams,

Oo ∼ N(µO, σ
2
O), for o = 1, · · · , # of offensive teams.

In detail, we consider a normal distribution to shrink the random intercepts for each

player and team toward their respective group means. This is a useful property since we do

not observe the same number of plays for each player. For the team effects, this provides
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us with the average defense and offense team-level effects on a pass rusher’s STRAIN. Due

to the nested nature of players on teams, the individual pass rusher and blocker random

intercepts reflect the respective player’s effect relative to their team effects. We implement

the model using penalized likelihood via the lme4 package in R (Bates et al., 2015; R Core

Team, 2023).

In order to provide a measure of uncertainty for our random effects, we use a bootstrap-

ping strategy similar to the approach in Yurko et al. (2019). Specifically, we resample team

drives within games, which preserves the fact that team schedules are fixed but allows for

random variation in player usage since this is dependent on team decision making. By re-

sampling plays within the same drive together, this allows us to generate realistic simulated

data in comparison to sampling individual plays. For each bootstrapped dataset, we fit the

aforementioned multilevel model to obtain a distribution of estimates for the considered

player and team effects.

As for the fixed effects about pass rusher j in play i, we include a variety of features

that likely contribute to variation in STRAIN. First, we adjust for the position of both

the pass rusher and nearest blocker to account for any positional effects. Table 3 shows

our positional categorization for the pass rush and pass block roles. These are encoded as

indicator variables with defensive ends and tackles as the reference levels for the pass rushers

and blockers, respectively. We also account for the number of pass blockers on the play,

since teams may decide to employ a more protective scheme that could lower the observed

STRAIN. Finally, we control for play-context covariates with respect to the offensive team.

These include the current down (first, second, third, fourth, or two-point conversion), yards

to go for a first down, and current yardline (i.e., distance from the possession team’s goal

line). We consider play-context information since these variables impact a team’s designed

play, which may result in a play with low or high STRAIN regardless of the pass rusher’s

role. For instance, a team may call a short pass that is intended to be thrown early which

could limit the amount of STRAIN on a play. Or a team may need to throw a deep pass

which would require more time and potentially create more STRAIN. We do not account

for time directly in the model due to the concern that the time it takes for a quarterback

to throw the ball is itself a function of both the play call and pressure from pass rushers.

Thus, since we do not know the designed play call, we condition on the play context to

adjust for play-level differences attributing to a pass rusher’s STRAIN.
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Table 3: Position groupings for pass rushers and blockers.

Role Position

Pass rush Defensive end

Pass rush Defensive tackle

Pass rush Nose tackle

Pass rush Outside linebacker

Pass rush Interior linebacker (middle linebacker, inside linebacker)

Pass rush Secondary (cornerback, free safety, strong safety)

Pass block Center

Pass block Guard

Pass block Tackle

Pass block Other (tight end, running back, fullback, wide receiver)

4 Results

4.1 Real-Game Illustration of STRAIN

To illustrate our proposed metric STRAIN for pass rush evaluation, we use the same play

from the Las Vegas Raiders and Denver Broncos game as mentioned in Section 2. Figure

4 shows an updated version of Figure 2, with the point size for each Las Vegas defender

corresponding to the estimated STRAIN in the selected frames as the play progresses. This

is accompanied by Figure 5, which is a line graph showing how Crosby’s distance from the

quarterback, velocity, and STRAIN change continuously throughout the play.

We observe that for the first two seconds, Crosby is being blocked by a Denver offensive

lineman and unable to get close to the quarterback, hence the corresponding STRAIN

values are virtually zero. Suddenly at around three seconds after the snap, the STRAIN

for Crosby starts to increase after the Raiders defensive end is freed up and charges toward

Bridgewater. At 4 seconds after the snap, Crosby’s STRAIN is 2.30, which means at his

current moving rate, it will take Crosby about 0.43 (1/2.30) seconds to make the distance

between him and the quarterback 0 (i.e. essentially sack the quarterback). This matches

well with the final outcome of the play, as the sack takes place at the very last frame (4.4

seconds) where the estimated STRAIN for Crosby reaches its peak at 3.96.

Moreover, Figure 5 clearly demonstrates the interactions between the features for Maxx
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Figure 4: A display of the player tracking data for a play during the Las Vegas Raiders

(defense, in black) versus Denver Broncos (offense, in orange) NFL game on October 17,

2021. Raiders DE Maxx Crosby is highlighted in blue. For each Raiders defender, the

point size indicates their individual STRAIN value, with larger points suggesting larger

STRAIN. Snapshots are captured at 1, 2, 3, and 4 seconds after the ball snap.
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Figure 5: Changes in STRAIN, velocity, and distance from the quarterback for Maxx

Crosby over the course of a successful pass rush play that results in a sack. The STRAIN

for other pass rushers throughout this play is also displayed.

Crosby. Here, a higher STRAIN generally corresponds to faster moving rate toward the

quarterback. STRAIN also increases as the distance between the pass rusher and quarter-

back is being reduced. Both of these relationships suggest an overall successful pass rush

by Maxx Crosby. It is also notable that Crosby, who is credited with a sack, generates

more STRAIN than other pass rushers during this play.

In contrast, Figure 6 shows the feature curves for an unsuccessful pass rush attempt

by the Raiders defense from the same game. In this play, Broncos QB Teddy Bridgewater

is well-protected by the offensive line and is able to release a long pass to a receiver. We

see that the STRAIN generated by Crosby is relatively small over the course of this play,

compared to the previous play (as shown in Figure 5) which results in a sack.

4.2 Positional STRAIN Curves

Figure 7 displays the average STRAIN by position for the first 40 frames (4 seconds) after

the snap. For each position, the curve is based on the average of the observed STRAIN at

each frame across all plays and players within the position. We observe a clear difference in

STRAIN between edge rushers (outside linebackers and defensive ends) and interior linemen

(defensive tackles and nose tackles). Specifically, edge rushers have higher STRAIN than

interior linemen on average, as they are more easily able to approach the quarterback on
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Figure 6: Changes in STRAIN, velocity, and distance from the quarterback for Maxx

Crosby over the course of an unsuccessful pass rush play. The STRAIN for other pass
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Figure 7: STRAIN curves for different positions. Edge rushers (outside linebackers and

defensive ends) tend to generate more STRAIN than interior rushers (defensive tackles and

nose tackles). The dotted gray line represents the average STRAIN curve for all players

without accounting for position.
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Figure 8: Positional STRAIN curves by play outcome (sack, hit, hurry, and none).

the edge of the pocket versus, for instance, a nose tackle attacking the line head on.

On average, STRAIN appears to increase for the first 0.5 seconds of a play, followed

by a decline in the next second. STRAIN then increases again until around 2.5–3 seconds

after the snap before trending down toward the end of the play. In context, this reflects the

actions that a pass rusher initially moves toward the quarterback, but is then stopped by

the offensive line while the quarterback drops back. When the quarterback stops dropping,

the rusher closes the gap and increases STRAIN, before slowing down later on.

Further, Figure 8 shows the positional STRAIN curves by whether a play’s outcome

is a hit, sack, hurry, or none of those. We clearly see that players tend to generate more

STRAIN when a play ends in a hit, sack, or hurry, compared to no outcome. Within the

three pressure metrics, it is not surprised that a sack corresponds to the highest amount of

STRAIN, followed by a hit and hurry.

4.3 Ranking the Best Pass Rushers

Since STRAIN is observed continuously for every play in our data, this allows us to aggre-

gate across all frames played and compute the average STRAIN for NFL pass rushers over

the course of the eight-week sample size, as discussed in Section 3.1. Based on the clearly

distinct patterns for different positions as previously observed, we evaluate interior pass

rushers (nose tackles and defensive tackles) separately from edge rushers (outside lineback-

ers and defensive ends). Tables 4 and 5 are leaderboards for the NFL’s best edge and

interior rushers (with at least 100 plays) rated by the average STRAIN across all frames
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Table 4: Top 15 edge rushers (with at least 100 snaps played) according to the average

STRAIN across all frames played.

Rank Player Team Position Snaps Hits Hurries Sacks STRAIN

1 Rashan Gary GB OLB 176 10 25 5 2.82

2 Leonard Floyd LA OLB 185 2 25 8 2.80

3 Justin Houston BAL OLB 132 8 8 4 2.78

4 Myles Garrett CLE DE 197 9 29 12 2.75

5 Von Miller DEN OLB 145 4 21 5 2.75

6 T.J. Watt PIT OLB 147 6 9 8 2.71

7 Yannick Ngakoue LV DE 175 6 20 4 2.70

8 Alex Highsmith PIT OLB 129 4 7 2 2.65

9 Preston Smith GB OLB 124 4 8 2 2.61

10 Randy Gregory DAL DE 134 7 19 5 2.58

11 Joey Bosa LAC OLB 160 5 21 4 2.58

12 Darrell Taylor SEA DE 107 5 9 3 2.57

13 Josh Sweat PHI DE 159 4 14 5 2.57

14 Maxx Crosby LV DE 198 12 30 7 2.56

15 Markus Golden ARI OLB 164 5 14 5 2.50

for the first eight weeks of the 2021 regular season. The tables also consist of the total

number of hits, hurries, and sacks (determined from PFF scouting data) for each defender.

Our results are mostly consistent with conventional rankings of rushers. Notably, Myles

Garrett and TJ Watt are widely recognized as top-tier edge rushers and both show up in

our top edge rusher list; whereas Aaron Donald, who is undoubtedly the best interior

defender in football, appears at the top of our interior rusher rankings. Moreover, our

leaderboards largely match the rankings of experts in the field. For instance, there is

considerable overlap between our lists and PFF’s edge (Monson, 2022) and interior (Linsey,

2022) rusher rankings released after the 2021 season. This ultimately lends credibility to

our proposed metric STRAIN as a measure of pass rushing effectiveness.
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Table 5: Top 15 interior rushers (with at least 100 snaps played) according to the average

STRAIN across all frames played.

Rank Player Team Position Snaps Hits Hurries Sacks STRAIN

1 Aaron Donald LA DT 239 8 24 6 1.67

2 Solomon Thomas LV DT 115 7 11 3 1.51

3 Quinton Jefferson LV DT 144 6 8 3 1.46

4 Chris Jones KC DT 139 3 18 3 1.42

5 DeForest Buckner IND DT 198 4 18 4 1.26

6 Cameron Heyward PIT DT 188 2 22 3 1.25

7 Javon Hargrave PHI DT 156 6 15 5 1.24

8 Jerry Tillery LAC DT 171 4 7 3 1.16

9 Ed Oliver BUF DT 133 4 12 1 1.15

10 Osa Odighizuwa DAL DT 162 3 18 3 1.13

11 Greg Gaines LA NT 111 2 13 2 1.11

12 Leonard Williams NYG DT 226 4 14 6 1.03

13 Christian Barmore NE DT 166 5 17 1 1.02

14 Vita Vea TB NT 184 6 12 1 1.01

15 B.J. Hill CIN DT 123 3 4 3 0.96
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4.4 Statistical Properties of STRAIN

Next, we examine different statistical properties of our proposed metric STRAIN. Our

focus here is to understand the stability and predictability of STRAIN, and we pose the

following question: How much does our metric vary from week to week? In other words,

is previous performance predictive of future performance based on our metric? Below, we

attempt the answer these questions, and the following results are for pass rushers with at

least 100 snaps played during the first eight weeks of the 2021 NFL regular season.

We first investigate the predictability of STRAIN as a measure of pressure. In particular,

we look at how well our metric correlates with a simple measure of pressure rate, defined as

the total hits, sacks and hurries per snap. Figure 9 is a scatterplot of average STRAIN and

pressure rate over the course the provided eight-game sample, which reveals a fairly strong

correlation (r = 0.6255) between the quantities. Hence, defenders with high STRAIN

values also tend to generate more pressure toward the quarterback. Furthermore, the

average STRAIN for the first four weeks of the 2021 season is more predictive of the last

four weeks’ pressure rate (r = 0.3217) than the first four weeks’ pressure rate (r = 0.0965),

as illustrated in Figure 10.

We also analyze the stability of STRAIN over time by comparing the average STRAIN

across all frames played for the first and last four weeks of the 2021 NFL regular season. It

is apparent from Figure 11 that there is a strong positive correlation (r = 0.8545) for this

relationship. This means that STRAIN is a highly stable football metric over the provided

eight-week time window, and pass rushers appear to carry their STRAIN values with them

from week to week. Overall, STRAIN performs well in both explaining defensive pressure

on the field and predicting future performance of pass rushers.

4.5 Multilevel Model Results

The results of fitting the multilevel model described in Section 3.2 is displayed in Table 6.

First, we investigate the fixed effects terms of this model. It appears that that the average

STRAIN decreases by 0.7366 (95% CI [-0.7875, -0.6858]) for every additional blocker in the

offensive unit, after accounting for other covariates. In other words, NFL pass rushers tend

to generate more pressure when facing fewer number of blockers, which makes intuitive

sense.
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Figure 9: Relationship between average STRAIN and pressure rate (total hits, sacks, and

hurries per snap) over the first eight weeks of the 2021 NFL season. There is a moderately

strong association between average STRAIN and pressure rate (r = 0.6255). Results shown

here are for pass rushers with at least 100 snaps played over the eight-week data.
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Figure 10: Relationships between pressure rate for the last 4 weeks of the 2021 NFL

season and first four weeks’ pressure rate (left) and average STRAIN (right). STRAIN

is more predictive (r = 0.3217) of future pressure rate than previous pressure rate itself

(r = 0.0965). Results shown here are for pass rushers with at least 100 snaps played over

the eight-week data.
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Figure 11: Relationship between average STRAIN for the last and first four weeks of the

2021 NFL season. A strong linear correlation (r = 0.8545) demonstrates that STRAIN is

a highly stable metric over time. Results shown here are for pass rushers with at least 100

snaps played over the eight-week data.

As for play context, defensive pressure appears to increase when more yardage is re-

quired for the offense to reach a first down and for later plays within a set of down, when all

other predictors are held constant. In particular, every extra yard in the distance needed

for a first down is associated with a 0.0491 increase (95% CI [0.0426, 0.0555]) in the average

STRAIN. Relative to first down situations, higher amount of pressure seem to happen in

plays that come after (second, third, and fourth downs). In addition, we have insufficient

evidence for a relationship between average STRAIN and the current yardline on the field

for the offensive team.

Moreover, we observe statistically significant differences among the pass rush and pass

block positions in most cases, while controlling for other variables. The coefficient estimates

for the pass rush position terms reveal that players with positions closer to the line of

scrimmage (defensive tackles and nose tackles) tend to generate less STRAIN (relative to

defensive ends) than those lining up further back, which is consistent with our results in

Section 4.2. For blockers, centers are those that absorb the most pressure on average, more

than guards and other offensive positions (compared to the baseline level, tackles).

Next, Table 7 displays the intraclass correlation coefficients (ICC) for the four different
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Table 6: Fixed effects coefficient estimates for the multilevel model for average STRAIN.

Note that the reference down level is first down, the reference pass rusher level is defensive

end (DE), denoted R:DE; the reference pass blocker level is tackle (T), denoted B:T.

estimate se t-statistic p-value

Intercept 1.8004 0.0991 18.1723 0.0000

Number of blockers -0.7366 0.0259 -28.4153 0.0000

Yards to go 0.0491 0.0033 14.9013 0.0000

Current yardline 0.0001 0.0005 0.1844 0.8537

I{2nd down} 0.5143 0.0290 17.7439 0.0000

I{3rd down} 0.9176 0.0324 28.3613 0.0000

I{4th down} 0.4649 0.0767 6.0637 0.0000

I{2pt conversion} -0.1384 0.1797 -0.7699 0.4413

I{R:DT} -0.7166 0.0678 -10.5658 0.0000

I{R:interior} 0.5611 0.0999 5.6143 0.0000

I{R:NT} -0.9426 0.1021 -9.2344 0.0000

I{R:OLB} 0.5574 0.0726 7.6742 0.0000

I{R:secondary} 1.4252 0.1114 12.7899 0.0000

I{B:C} -0.2983 0.0594 -5.0237 0.0000

I{B:G} -0.1546 0.0471 -3.2847 0.0000

I{B:other} -0.1260 0.0646 -1.9508 0.0514

groupings, describing the proportion variance explained between the group terms in com-

parison to the residual variance. While the residual variance is unsurprisingly the largest

value, between the player and team factors, we observe the largest ICC for pass rushers, fol-

lowed by the offensive and defensive teams, and the blocker. This emphasizes how STRAIN

is mostly attributable to pass rushers, but is necessary to adjust for opposition and other

factors.

Aside from adjusting for opposition, our multilevel model allows us to provide some

notion of uncertainty about the pass rusher’s effect on the play level STRAIN. Figure 12

displays the varying intercept distributions for the top ten pass rushers for each position.

We obtain similar rankings based on the random intercepts in comparison to the average

STRAIN results in Tables 4 and 5, with Myles Garrett (defensive end), T.J. Watt (outside
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Table 7: Intraclass correlation coefficients for the multilevel model for average STRAIN.

Pass rusher Pass blocker Defensive team Offensive team Residual

ICC 0.0365 0.0098 0.0134 0.0143 0.9260

DT NT
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Figure 12: Distributions of player effects (obtained from 1,000 bootstrap samples) for top

10 pass rushers in each position (defensive end, outside linebacker, defensive tackle, nose

tackle) by median varying intercept.
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linebacker), Aaron Donald (defensive tackle), and Vita Vea (nose tackle) as the first-ranked

pass rusher for their respective position. Additionally, we observe different levels of variabil-

ity across these top defenders, with only a subset of players having intercept distributions

strictly above zero. This is not necessarily surprising given the limited sample of data.

5 Discussion

In this work, we have proposed STRAIN—a simple and interpretable statistic for evaluating

pass rushers—with higher values corresponding to greater pass rushing ability. STRAIN

is a model-free metric which can easily be integrated into any data pipeline without much

computational cost. Visualizations of STRAIN can be useful and intuitive for coaches

and broadcasters in various aspects ranging from gameplan preparation to in-game real-

time play analysis. We demonstrate that a pass rusher’s average STRAIN is both stable

and more predictive of future pressure events than using the player’s previously observed

pressure events. This is analogous to the use of exit velocity in baseball, a predictive

measurement that avoids the noisy nature of observed outcomes, emphasizing how the

opportunity of working with player tracking data can lead to the development of insightful

metrics in American football. Through multilevel modeling, we observe that the pass rusher

explains more variation in their play-level STRAIN, followed by the possession team and

pass rushing team, and finally the pass rusher’s assigned blocker. This is an intuitive result,

consistent with previous literature on pass rushing and defensive pressure.

Our multilevel model, however, is subject to several limitations. We only account for

players directly involved as the pass rusher or nearest blocker, on top of team-level effects.

The nested structure of our model enforces positive dependence between pass rushers on

the same team, which may not be true. For instance, if one defender is known to be an elite

pass rusher then the opposing team may focus their blocking efforts on this player. This

could leave the path open for another player to rush the quarterback with ease, resulting

in higher STRAIN values. As shown in Figure 12, the first- and fourth-ranked defensive

ends Myles Garrett and Takkarist McKinley were teammates on the Cleveland Browns

during the first eight weeks of the 2021 NFL season. McKinley is a surprising name on

our list and we suspect that his high rank is mostly due to playing on the same defensive

unit with Garrett, who is highly-regarded as a great pass rusher. In order to capture this
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type of behavior, we could consider modeling an aggregate STRAIN across pass rushers

with a regularized adjusted plus-minus (RAPM) regression approach. The use of RAPM

techniques has been successfully demonstrated in American football by Sabin (2021), which

accounts for all players on the field with Bayesian hierarchical models. We leave this type

of analysis for future work, which will require careful consideration of available informative

priors (Matano et al., 2023).

In addition, we believe there are other concepts in materials science that could be applied

to evaluating pass rushing and pass blocking in American football. One potential idea is to

consider a quantity called stress, which measures force over an area. By definition, force is

the product of mass and acceleration, meaning this quantity would take into account the

physical size of a pass rusher in the computation of force. We could then divide this force

over the “area” of the pocket formed by pass blockers to compute stress.

Moreover, although we focus solely on pass rushers in this paper, STRAIN can also be

applied to the assessment of pass blockers as a unit. This can be accomplished through

the aforementioned RAPM regression or by simply looking at quantities such as the total

STRAIN or the maximum STRAIN per frame aggregated across the entire play. It is also

possible to apply STRAIN to assess individual offensive pass blockers, provided that a

method of matching blockers to rushers is developed. Furthermore, compared to existing

metrics, STRAIN measures pass rush effectiveness for every play continuously over time,

which is at a much more granular level than considering whether the play resulted in a

binary outcome such as a sack. Indeed, visualizations of STRAIN curves across moments

of time within plays reveal variability that simple averaging may obscure. There is ample

opportunity for working with the complete STRAIN trajectories via temporal modeling

and functional data analysis techniques to better understand the impact of STRAIN on

offensive production in American football.
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SUPPLEMENTARY MATERIAL

All code related to this paper is available at https://github.com/getstrained

/intro-strain. The data provided by the NFL Big Data Bowl 2023 is available at

https://www.kaggle.com/competitions/nfl-big-data-bowl-2023/data.
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